
Guide for 3D WARP simulations of hollow electron beam lenses:
Practical explanation on basis of Tevatron electron lens test stand

Vince Moens
vince.moens@epfl.ch

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Supervisor at Fermilab:
Dr. Giulio Stancari

Fermilab, Batavia IL, USA

Supervisor at CERN:
Dr. Stefano Redaelli

CERN, Geneva, Switzerland

Supervisor at EPFL:
Prof. Dr. Leonid Rivkin

EPFL, Lausanne, Switzerland

FERMILAB-TM-2586-APC — June 8, 2014

Acknowledgment

Fermi National Accelerator Laboratory (Fermilab) is operated by Fermi Research Alliance, LLC
under Contract DE-AC02-07-CH-11359 with the United States Department of Energy. This research
was supported in part by the US DOE LHC Accelerator Research Program (LARP).

Contents

1 Introduction 1

2 WARP Installation 2
2.1 Introduction . 2
2.2 Installation procedure . 3

2.2.1 Installing on a personal computer . 3
2.2.1.1 Installing Python . 3
2.2.1.2 Installing Numpy . 4
2.2.1.3 Installing SciPy . 5
2.2.1.4 Installing iPython . 5
2.2.1.5 Installing Forthon . 6
2.2.1.6 Installing openmpi . 6
2.2.1.7 Installing WARP . 7

2.2.1.7.1 Single Installation Configuration 7
2.2.1.7.2 Parallel Installation Configuration 7

2.2.1.8 Installing PyGist . 8
2.2.2 Installing on TEV or vdisk1 . 9

2.2.2.1 Installing Python . 10
2.2.2.2 Installing Numpy . 10
2.2.2.3 Installing SciPy . 11
2.2.2.4 Installing iPython . 11
2.2.2.5 Installing Forthon . 11
2.2.2.6 Installing WARP . 12

2.2.2.6.1 Single Installation Configuration 12
2.2.2.6.2 Parallel Installation Configuration 12

2.2.2.7 Installing PyGist . 13
2.3 Reinstall & Update . 13

3 Using iPython, WARP, Gist, MPIRUN, PyMPI, qsub, qstat 15
3.1 Using iPython . 15
3.2 Using WARP . 15
3.3 Using Gist . 16
3.4 Using mpirun and pyMPI . 17
3.5 Using qsub . 19
3.6 Using qstat . 19
3.7 Checking the progress of a simulation and killing a job. 19
3.8 Reloading a dumped simulation. 20

4 The TEV and vdisk1 computing devices. 21

5 Explanation of current WARP scripts 23
5.1 Naming of the scripts . 23
5.2 Explanation of current HEBL script . 23
5.3 Example of running the script in the current environment. 55

June 8, 2014 I

Vince Moens Contents

6 Acknowledgements 57

Table of Contents 58

June 8, 2014 II

Chapter 1

Introduction

The purpose of this guide is to help successive students handle WARP. It outlines the installation
of WARP on personal computers as well as super-computers and clusters. It furthermore teaches
the reader how to handle the WARP environment and run basic scripts. Lastly it outlines how to
execute the current Hollow Electron Beam Lens scripts.

This guide is intended for individuals with basic Python literacy and scripting experience. A
deep understanding of Python, Fortran or WARP is not required. The aim is to help future students
advance the current Hollow Electron Beam Lens simulations using WARP.

The quide will specifically discuss the following points:

• Installation of WARP

• Usage of WARP and other tools

• TEV, vdisk1 and other computing devices

• Explanation of current Hollow Electron Beam Lens (HEBL) script

For a WARP guide, please refer to the guide written by David P. Grote and hsi colleagues [1]. If
you wish some more information about the Hollow Electron Beam Lens, refer to the Master Thesis
of Vince Moens [2].

Installation documents and guides for WARP can be found on the Electron Lens Wiki page at
Fermilab 1.

1https://cdcvs.fnal.gov/redmine/attachments/download/10742/WARP_install.pdf

June 8, 2014 1

https://cdcvs.fnal.gov/redmine/attachments/download/10742/WARP_install.pdf

Chapter 2

WARP Installation

WARP is compatible with Unix based systems, including Mac OS X. It is not compatible with
Windows OS.

2.1 Introduction
For the purpose of this document, TEV refers to the Wilson Cluster at the Fermi National
Accelerator Lab in Batavia, Illinois, USA.

A primary set of installation instructions can be found at warp.lbl.gov together with the
links for the various installation files required. These links will also be listed in this installation
guide. A tar-ball has been created secifically for these instructions, which can be found at:
https://cdcvs.fnal.gov/redmine/documents/619. It is called WARP_Install.

In order to easily run and develop simulations, it is recommended to have WARP installed on
your local computer as well as on TEV. For smaller simulations that are too heavy for your personal
computer, it is recommended to use vdisk1.

To access TEV or vdisk1, contact the relevant administrators and see that you are given a user
account. You can then access it using secure shell (SSH) from anywhere using the following:

ssh -Y usaername@tev.fnal.gov

where you should replace the user name with your own. The option -Y is crucial to enable the
export of the graphical X windows.

It is important to note that vdisk1 is not directly accessible from outside the Fermilab network.
If you want to access it from outside the Fermilab network, first use secure shell to access TEV and
then ssh into vdisk1 from there, or do the same via the storage server mrbutts. Thus to access it,
type the following:

ssh -Y username@tev.fnal.gov
ssh -Y username@vdisk1

While the installation of WARP on personal computers is generally straight forward, Installing
WARP on TEV brings a few complications. Nonetheless it is important to notice that on a Mac
OS, the installation of Xcode, the Xcode developer tools and XQuartz is necessary. These can be
obtained from the website of Apple. On TEV, compatibility issues with the python installed on
TEV, compiler issues and super user rights issues can arise. Instead of finding a solution in which
one could bind the python package WARP, which has to be installed locally, into the native python
of TEV by creating links and changing a lot of PATHS, we decided to just install a clean version of
python in the local directory and use that distribution.

June 8, 2014 2

warp.lbl.gov
https://cdcvs.fnal.gov/redmine/documents/619

Vince Moens Chapter 2. WARP Installation

These instructions will cover the installation of WARP on personal computers as well as on
TEV using parallel processing and single processing.

2.2 Installation procedure
Apparently the most recent version of Mac OS X Maverick, the compiler front end of C, C++
and Objective C/C++, called clang, no longer allows unused arguments when compiling scripts.
This causes some issues with the installation of WARP on the newest version of Mac OS X. I
have not yet found a solution and will work on this at a later point. Up to now it is recom-
mended to look at the following thread: http: // stackoverflow. com/ questions/ 22313407/
clang-error-unknown-argument-mno-fused-madd-python-package-installation-fa .

Before commencing any installation of WARP, please check that you have all necessary compilers
of gcc, including gfortran. If you do not have these pre-installed, you may obtain them from
gcc.gnu.org. In 99.9% of the cases, you will already have these pre-installed.

As discussed previously, you should start the installation by downloading the above mentioned
tarball WARP_Install from the redmine website. Alternatively you may download each package
separately from the online repositories, as explained along the installation process. This will ensure
that you have the most up to date version of WARP installed, since the tarball might not always
be updated by the users of this guide.

In order to download the tarball to your home directory in TEV, first download it to your home
directory on your personal computer and then transfer it using scp. Type the following into your
command line on your personal computer:

cd
wget -i https://cdcvs.fnal.gov/redmine/attachments/download/10741/WARP_Install.tar

.gz
scp -r WARP_Install.tar.gz username@tev.fnal.gov:/home/username/

where you should replace username with your user name in both instances. For an installation on
your local computer, use the same file you just downloaded but omit the copying to TEV.

If you have decided to proceed with the installation via the tarball, you should now unpack it
by entering the directory in which you installed it and typing:

cd
tar -xvf WARP_Install.tar.gz

You will now find a directory labeled WARP_Install in your directory.

2.2.1 Installing on a personal computer
Personal computers usually come with Python, Numpy and sometimes even Scipy pre installed.
Please check if these are installed. If so you may jump past these parts of the following instructions.

2.2.1.1 Installing Python

The first step is to install Python on your machine. You may also use this to update your installation.
WARP is compatible with versions 2 and 3 of Python. Up to now I have always used Python 2.7.6,
you may choose to use a different version, but this quide will be written in terms of Python 2.7.6.

First of all enter the WARP_Install directory. If you wish to update the version of WARP,
execute the following:

cd WARP_Install/
wget -i https://www.python.org/ftp/python/2.7.6/Python-2.7.6.tgz
tar -xvf Python-2.7.6.tgz
cd Python-2.7.6

June 8, 2014 3

http://stackoverflow.com/questions/22313407/clang-error-unknown-argument-mno-fused-madd-python-package-installation-fa
http://stackoverflow.com/questions/22313407/clang-error-unknown-argument-mno-fused-madd-python-package-installation-fa
gcc.gnu.org

Vince Moens Chapter 2. WARP Installation

wget downloads the new Python package and tar expands it. It is important that you update the
version number in the commands to those of your liking.

Having entered the Python directory, you should prepare the installation by running the
configure file. You may specify a install location using the prefix argument (see installation
on TEV). Usually this is not necessary on a personal computer.

./configure
sudo make install

You can check your python installation by running

cd
which python

which checks which gives the location of your python installation. For me it is /usr/bin/python.
You can furthermore execute Python to check the version number:

cd
python

which should provide you with an output similar to this:

Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

In this case the version number of python is 2.7.6, which was compiled using GCC 4.8.2. You can
quit python by typing quit().

2.2.1.2 Installing Numpy

Next you will install the numerical python package.
If you wish to update the numpy package part of the tarball run the following1:

cd ~/WARP_Install/
git clone http://github.com/numpy/numpy.git numpy
cd numpy

else omit the middle command and just enter the numpy directory.
Next you should run the setup.py script:

sudo python setup.py install

The path given to prefix should be the same as that for your python installation. If you haven’t
given one during the Python installation, don’t give one here. Check your numpy installation by
loading python and then numpy.

cd
python
import numpy

If numpy loads without errors, your installation was successfull. In this case your output should
look like the following:

Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>>

You can check your numpy install location by typing numpy.__path__ after having loaded numpy
in python.

1This requires git. If you do not have git installed, you may install it through your package manager, for example
through the command sudo apt-get install git.

June 8, 2014 4

Vince Moens Chapter 2. WARP Installation

2.2.1.3 Installing SciPy

Next you will install the scientific python package.
If you wish to update the scipy package within the tarball run the following2:

cd ~/WARP_Install/
git clone git://github.com/scipy/scipy.git scipy
cd scipy

else omit the middle command and just enter the scipy directory within the tarball.
Run the setup.py script by first running build (no prefix) and then install.

cd ~/WARP_Install/scipy/
python setup.py build
sudo python setup.py install

The path given to prefix should be the same as that for your python installation. If you haven’t
given one during the Python installation, don’t give one here.

Check your scipy installation by loading python and then scipy. Subsequently you should pass
the command scipy.__path__ to python. The path should refer to the python installation in your
home directory.

cd
python
import scipy

If scipy loads without errors, your installation was successful. In this case your output should
look like the following:

Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import scipy
>>>

You can check your scipy install location by typing scipy.__path__ after having loaded scipy in
python.

2.2.1.4 Installing iPython

iPython is a more friendly interface for python. It allows syntax coloring and simplifies certain
commands such as quit() becomes quit. It furthermore allows you to call directories and change
paths from inside python in a simple fashion. This package is not required but recommended.

If you wish to update the ipython package within the tarball run the following3:

cd ~/WARP_Install/
git clone https://github.com/ipython/ipython.git ipython
cd ipython

else omit the middle command and just enter the ipython directory within the tarball.
Install it using the setup.py file:

python setup.py install

From now on you may start python by typing ipython instead of python. The output from
starting ipython changes slightly with respect to python and now looks like:

2This requires git. If you do not have git installed, you may install it through your package manager, for example
through the command sudo apt-get install git.

3This requires git. If you do not have git installed, you may install it through your package manager, for example
through the command sudo apt-get install git.

June 8, 2014 5

Vince Moens Chapter 2. WARP Installation

Python 2.7.6 (default, Mar 22 2014, 22:59:56)
Type "copyright", "credits" or "license" for more information.

IPython 1.2.1 --An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’, use ’object??’ for extra details.

In [1]:

2.2.1.5 Installing Forthon

Having installed python and numpy in your home directory, you now have a fully functioning
python distribution for science. We still need the WARP package. Therefore we now install
Forthon. This is a binding between Fortran and Python.

If you wish to update the Forthon package within the tarball run the following4:

cd ~/WARP_Install/
git clone https://github.com/dpgrote/Forthon.git Forthon
cd Forthon
else omit the middle command and just enter the Forthon directory within the tarball.

Execute the setup.py file.

cd ~/WARP_Install/Forthon
sudo python setup.py install

Upon termination of the script you can check the installation by loading Forthon:

cd
ipython
import Forthon

If Forthon loads without errors, your installation was successfull. In this case your output should
look like the following:

In [1]: import Forthon

In [2]:
You can check your Forthon install location by typing Forthon.__path__ after having loaded
numpy in python. Additionally you can type which Forthon to check for the path of the Forthon
package that is used.

2.2.1.6 Installing openmpi

This is only necessary if you do not have a running version of openmpi. If you do, it is not
recommended to reinstall. If you decide to reinstall anyways, install it in a different directory than
the standard installation.

While this is normally not necessary, some computers or servers might require the installation
of openmpi. For example, Mac OS X Maverick requires this installation. We will therefore quickly
outline how to install openmpi. Openmpi is used for parallel processing in WARP.

First start of by downloading the newest stable release from the Open MPI website. The releases
can be found on http://www.open-mpi.org/software/. Copy the tar-file to the directory from
which you wish to install it, best your WARP install directory. Next you should unpack it using the
following command.

4This requires git. If you do not have git installed, you may install it through your package manager, for example
through the command sudo apt-get install git.

June 8, 2014 6

http://www.open-mpi.org/software/

Vince Moens Chapter 2. WARP Installation

tar zxvf openmpi-1.8.1.tar.gz

You should now have a directory called openmpi-1.8.1 in your install directory. Enter it and run
the configuration file using the following commands:

cd openmpi-1.8.1
./configure --prefix=/usr/local

This should run without any problems. It checks whether you have all necessary compilers. If not,
please install them and run the command again. Next you should compile all binaries and configure
the wrappers using make. If successful, run the installation:

make all
sudo make install

2.2.1.7 Installing WARP

This is probably the trickiest part. First you must decide on whether you wish to install a single, a
parallel or both versions of WARP. The difference is apparent in how you handle the compilation of
Makefile.Forthon or Makefile.Forthon.pympi. I will first explain the single version and then the
parallel version. You may compile both in the same directory. The installations will not interfere
with each other. The difference is in how you call warp once it is installed.

In this case you should actually update the package to its newest version before installing. WARP
is still in its development process and bugs are therefore constantly being removed. To update run
the following:

cd ~/WARP_Install/
git clone https://bitbucket.org/berkeleylab/warp.git warp

2.2.1.7.1 Single Installation Configuration For a single processor installation, call the
warp directory and go into pywarp90. Here you will have to make a file called WarpC.so which will
be placed in the scripts directory.

cd ~/WARP_Install/warp/pywarp90/
make -f Makefile.Forthon

Upon successful compilation, you should find a file called WarpC.so in the sister-directory
scripts which is located in the parent directory. Additionally a folder labeled build will ap-
pear in your pywarp folder. If you were to reinstall, first delete the build directory using rm -Rf
build.

2.2.1.7.2 Parallel Installation Configuration In order to install a parallel version of
WARP, you will have to first find the install directories of openmpi. They are usually located
somewhere in /usr/lib/ and /usr/include/ or /usr/local/lib/ and /usr/local/include/.
You will then have to cd into the pywarp directory:

cd ~/WARP_Install/warp/pywarp90/

Next you will have to adapt the directories in the file Makefile.Forthon.pympi. First replace
the paths in line 2 of Makefile.Forthon.pympi, which defines FARGS, with the directories you found
before. The header -I refers to the include directory and -L to the directory. In my case I adapt
the lines to the following:

FARGS = --farg "-DMPIPARALLEL -I/usr/lib/openmpi -L/usr/include/openmpi/"

Now you should create a new file in pywarp90 called setup.local.py, which reads:

if parallel:
library_dirs = library_dirs + [’/usr/lib/openmpi/’]
libraries = fcompiler.libs + [’mpi’,’mpi_f77’]

June 8, 2014 7

Vince Moens Chapter 2. WARP Installation

where the path should be again adapted to your install paths for openmpi.
Once you have modified the first file and created the setup file, or have decided to use the

files present in the WARP install directory, you may make Makefile.Forthon.pympi using the
command:

cd ~/WARP_Install/warp/pywarp90
make -f Makefile.Forthon.pympi

Upon successful compilation, you should find a file called WarpCparallel.so in the directory
scripts which is located in the parent directory. Additionally a folder labeled buildparallel will
appear in your pywarp folder. If you wish to reinstall, you should remove this build directory.

For the parallel installation you will also require pyMPI. You may install the newest version by
obtaining it from git:

cd ~/WARP_Install/
git clone http://portal.nersc.gov/project/warp/git/pyMPI.git

or alternatively you may use the version included in the WARP_Install directory. You may then
install it via:

./configure
sudo make install

Now call the directory scripts and execute the setup.py file.

cd ../scripts
sudo python setup.py install

The path given to prefix should be the same as that for your python installation. If you haven’t
given one during the Python installation, don’t give one here.

Check your warp installation by loading python and then warp.

cd
ipython
import warp

If warp loads without errors, your installation was successful. In this case your output should
look like the following:

In [1]: import warp
Warp
Origin date: Mon, 8 Jul 2013 13:06:44 -0700
Local date: Mon, 8 Jul 2013 13:06:44 -0700
Commit hash: 4133853
/usr/local/lib/python2.7/dist-packages/warp/warp.pyc
/usr/local/lib/python2.7/dist-packages/warp/warpC.so
Thu May 15 18:01:40 2014
import warp time 17.6758611202 seconds
For more help, type warphelp()

You can check your warp install location by typing warp.__path__ after having loaded scipy in
python.

2.2.1.8 Installing PyGist

PyGist is the graphical interface of WARP. It is necessary to produce all the visual interpretation
of your simulations.

If you wish to update the PyGist package within the tarball run the following5:

5This requires git. If you do not have git installed, you may install it through your package manager, for example
through the command sudo apt-get install git.

June 8, 2014 8

Vince Moens Chapter 2. WARP Installation

cd ~/WARP_Install/
git clone https://bitbucket.org/dpgrote/pygist.git pygist
cd pygist

else omit the middle command and just enter the pygist directory within the tarball.
After this you may run the install script as usual.

cd ~/WARP_Install/pygist
python setup.py config
sudo python setup.py install

You may again check the installation by calling any directory except the install directories,
running Python and importing gist. The output should look as follows:

In [3]: import gist

In [4]:

You can check your pygist install location by typing gist.__path__ after having loaded numpy
in python. Additionally you can type which gist to check for the path of the Forthon package
that is used.

2.2.2 Installing on TEV or vdisk1
Create a directory where you would want to install Python and WARP. For the purpose of this
tutorial we will use the directory Python in your home directory.

cd
mkdir Python

Next we want to make sure that every compilation of a python script from this point is done
using the same compilers and your new python installation. There is two methods to do this. The
first is the recommended one and automatically loads the new path upon opening a window. In
order to do this check for a file named .bash_profile in your home directory.

cd
ls -lisa

If it does not exist, create it by typing:

cd
nano .bash_profile

Then in the new terminal window insert the following data:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

User specific environment and startup programs

PATH=/usr/local/gcc-4.6.2/bin:/home/USERNAME/Python/bin:$PATH
export PATH

export LD_LIBRARY_PATH=/usr/local/gcc-4.6.2/lib64:/usr/local/gcc-4.6.2/lib

June 8, 2014 9

Vince Moens Chapter 2. WARP Installation

Be sure to change the user name on line 10 to your own user name. Close nano by typing Ctrl-O,
Enter and Ctrl-X.

If it does exist, append the file by opening it in a similar fashion as above using nano and append
the file with:

User specific environment and startup programs

PATH=/usr/local/gcc-4.6.2/bin:/home/USERNAME/Python/bin:$PATH
export PATH

export LD_LIBRARY_PATH=/usr/local/gcc-4.6.2/lib64:/usr/local/gcc-4.6.2/lib

Again, be sure to change the user name on line 3 to your own user name and close nano by typing
Ctrl-O, Enter and Ctrl-X.

2.2.2.1 Installing Python

We will now install Python 2.7.3 locally into your home directory. Go into Python-2.7.3 in the
directory WARP_Install.

cd WARP_Install/Python-2.7.3/

In order to install python, run the configure file, while specifying a prefix. In my case the prefix
is /home/vmoens/Python.

./configure --prefix=/place/where/python/is/to/be/installed
make install

You can check whether the directories bin, include, lib and share can be found in the directory
that you used as prefix above. Furthermore you should run:

cd
which python

which checks which version of python you use. The output should refer to your install directory,
for me it is /Python/bin/python.

2.2.2.2 Installing Numpy

Next you will install the numerical python package. In order to install it cd into the directory numpy
in WARP_Install and run the setup.py script.

cd ~/WARP_Install/numpy/
python setup.py install --prefix=/place/where/python/is/to/be/installed

The path given to prefix should be the same as that for your python installation. Check your
numpy installation by loading python and then numpy. Subsequently you should pass the command
numpy.__path__ to python. The path should refer to the python installation in your home directory.

cd
python
import numpy
numpy.__path__

(do not copy all 4 lines at once into your terminal. it will cause errors.)
I obtained the output: [’/home/vmoens/Python/lib/python2.7/site-packages/numpy’].

You can quit python by typing quit().

June 8, 2014 10

Vince Moens Chapter 2. WARP Installation

2.2.2.3 Installing SciPy

Next you will install the scientific python package. In order to install it cd into the directory
scipy-0.12.0 in WARP_Install and run the setup.py script by first running build (no prefix) and
then install.

cd ~/WARP_Install/scipy/
python setup.py build
python setup.py install --prefix=/place/where/python/is/to/be/installed

The path given to prefix should be the same as that for your python installation. Check your
scipy installation by loading python and then scipy. Subsequently you should pass the command
scipy.__path__ to python. The path should refer to the python installation in your home directory.

cd
python
import scipy
scipy.__path__

(do not copy all 4 lines at once into your terminal. it will cause errors.)
I obtained the output: [’/home/vmoens/Python/lib/python2.7/site-packages/scipy’].

You can quit python by typing quit().

2.2.2.4 Installing iPython

iPython is a more friendly interface for python. It allows syntax coloring and simplifies certain
commands such as quit() becomes quit. It furthermore allows you to call directories and change
paths from inside python in a simple fashion. This package is not required but recommended. Install
it using the setup.py file:

$ tar -xzf ipython.tar.gz
$ cd ipython
$ python setup.py install

From now on you may start python by typing ipython instead of python.

2.2.2.5 Installing Forthon

Having installed python and numpy in your home directory, you now have a fully functioning
python distribution for science. We still need warp. Therefore we now install Forthon. This is a
binding between Fortran and Python.

Start of by going into the Forthon directory and executing the setup.py file.

cd ~/WARP_Install/Forthon-0.8.11
python setup.py install --prefix=/place/where/python/is/to/be/installed

Upon termination of the script you can check the installation by checking the path of the Forthon
installation:

cd
python
import Forthon
Forthon.__path__

The path should again point to your install directory.
For me it points to: [’/home/vmoens/Python/lib/python2.7/site-packages/Forthon’]. Ter-
minate Python with quit(). Additionally you can type which Forthon to check for the path of
the Forthon package that is used.

Given a correct directory for Forthon, you have successfully installed Forthon and can now start
installing WARP itself.

June 8, 2014 11

Vince Moens Chapter 2. WARP Installation

2.2.2.6 Installing WARP

This is probably the trickiest part. First you must decide on whether you wish to install a single, a
parallel or both versions of WARP. The difference is apparent in how you handle the compilation of
Makefile.Forthon or Makefile.Forthon.pympi. I will first explain the single version and then the
parallel version. You may compile both in the same directory. The installations will not interfere
with each other. The difference is in how you call warp once it is installed.

2.2.2.6.1 Single Installation Configuration Call the warp directory and go into
pywarp90. Here you will have to make a file called WarpC.so which will be placed in the scripts
directory.

cd ~/WARP_Install/warp/pywarp90/
make -f Makefile.Forthon

Upon successful compilation, you should find a file called WarpC.so in the directory scripts
which is located in the parent directory. Additionally a folder labeled build will appear in your
pywarp folder.

2.2.2.6.2 Parallel Installation Configuration In order to install a parallel version of
WARP, you will have to first find the install directories of openmpi. On tev they can be found at
/local/openmpi/. You will then have to cd into the pywarp directory:

cd ~/WARP_Install/warp/pywarp90/

In the WARP_Install directory, which accompanies this script, all necessary modifications have
already been made and you may thus skip to the making of Makefile.Forthon.pympi.

In case you use an updated version of WARP which you can download from warp.lbl.gov, you
will have to make these changes again. First replace line 2 of Makefile.Forthon.pympi, which
defines FARGS, with:

FARGS = --farg "-DMPIPARALLEL -I/usr/local/openmpi/include -L/usr/local/openmpi/
lib/"

Now you should create a new file in pywarp90 called setup.local.py, which reads:

if parallel:
library_dirs = library_dirs + [’/usr/local/openmpi/lib/’]
libraries = fcompiler.libs + [’mpi’,’mpi_f77’]

Once you have modified the first file and created the setup file, or have decided to use the files present
in the WARP install directory, you may make Makefile.Forthon.pympi using the command:

make -f Makefile.Forthon.pympi

Upon successful compilation, you should find a file called WarpCparallel.so in the directory
scripts which is located in the parent directory. Additionally a folder labeled buildparallel will
appear in your pywarp folder.

For the parallel installation you will also require pyMPI. You may install the newest version by
obtaining it from git:

cd ~/WARP_Install/
git clone http://portal.nersc.gov/project/warp/git/pyMPI.git

or alternatively you may use the version included in the WARP_Install directory. You may then
install it via:

./configure --prefix=/place/to/install
make install

Now call the directory scripts and execute the setup.py file.

June 8, 2014 12

warp.lbl.gov

Vince Moens Chapter 2. WARP Installation

cd ../scripts
python setup.py install --prefix=/place/where/python/is/to/be/installed

again you should use the same prefix directory as for your other installations. You make check
the successful installation of WARP by launching Python, loading WARP and checking its path.

cd
python
import warp
warp.__path__

I obtain the following result [’/home/vmoens/Python/lib/python2.7/site-packages/warp’].
Terminate python using quit().

2.2.2.7 Installing PyGist

Be certain to have the X11 header files installed.
PyGist is the graphical interface of WARP. It is the most tricky to install since it has hard

coded directories in the install code that require super user privileges and need to be changed.

Using an editor of your liking you will need to adapt the code. For the purpose of this example
I will use VIM, since it is a terminal integrated editor that supports syntax highlighting.

Start of by calling the pygist directory and opening the setup.py file in your editor.

cd ~/WARP_Install/pygist
vim setup.py
:set number
:syntax on

Now go to line 445 and replace ’/home/vmoens/Python/bin’ with the bin directory in the
directory you have used above for prefix. Do the same on line 452. You may edit in vim by typing
i and leave the editing mode by pressing Esc. You may go to a line by typing : and then the
number. For example :445.

After having changed the lines, leave the editor (type :wq) and configure the install script. After
this you may run the install script as usual.

cd ~/WARP_Install/pygist
python setup.py config
python setup.py install --prefix=/place/where/python/is/to/be/installed

You may again check the installation by calling any directory except the install directories,
running Python and importing gist. Now check the path in which gist is installed.

cd
python
import gist
gist.__path__

I obtain [’/home/vmoens/Python/lib/python2.7/site-packages/gist’]. You may again
quit python by typing quit().

You have now successfully installed WARP on TEV. If you wish you may now delete that
WARP_Install directory and its tarball.

2.3 Reinstall & Update
Updates and reinstalls are easily possible. In order to reinstall a part of the software from a install
directory that you have already used, you will have to ensure that all folders labeled build and

June 8, 2014 13

Vince Moens Chapter 2. WARP Installation

buildparallel have been removed from your installation directory. Once this is completed, you
may proceed as you did during the installation above. Updates versions of all the packages are either
available from warp.lbl.gov or from the respective python repositories. As a rule of thumb, you
may always just reinstall what is in a subsection in the instructions above. The different subsections
in the installation instructions should be independent of each other. Only for the installation of the
warp directory, will you have to go through the compilation of the makefiles and the installation of
the scripts directory.

June 8, 2014 14

warp.lbl.gov

Chapter 3

Using iPython, WARP, Gist,
MPIRUN, PyMPI, qsub, qstat

Before we discuss the execution of WARP scripts on the various devices referenced in this guide, we
will shortly introduce each of the packages that we have just installed and you will interact with. We
will start of with iPython, the more user friendly front end for python. Next we’ll discuss WARP,
Gist and then the tools needed for parallel processing, mpirun and PyMPI.

3.1 Using iPython
IPython is focused on facilitating interactive computing in any language. It has its own kernel that
interprets your commands and psses them on to the specific language used. Furthermore it supports
notebook documentation and several tools for high performance parallel computing. Up to now we
have solely used it to provide a more interactive method to interact with Python, including syntax
highlighting, directory manipulation and simplification of certain codes.

After starting IPython with the command ipython, syntax highlighting should be immediately
visible. The input lines have also changed from the standard > > > to the Mathematica style input
lines of In [1]:.

As mentioned, some commands change, such as quit() becomes quit. For a nice list of all of
the options that IPython offers, type %quickref into the IPython interpreter.

3.2 Using WARP
Once you have loaded Python or IPython, you may load WARP. There are two possible methods
to do so. Either type import warp or from warp import *. The first is preferred since it will give
you some background information concerning the warp you are running. If you use that method to
load warp, your output should have the following format:

In [5]: import warp
Warp
Origin date: Mon, 8 Jul 2013 13:06:44 -0700
Local date: Mon, 8 Jul 2013 13:06:44 -0700
Commit hash: 4133853
/usr/local/lib/python2.7/dist-packages/warp/warp.pyc
/usr/local/lib/python2.7/dist-packages/warp/warpC.so
Fri May 16 11:10:50 2014
import warp time 1.66094303131 seconds

June 8, 2014 15

Vince Moens Chapter 3. Using iPython, WARP, Gist, MPIRUN, PyMPI, qsub, qstat

For more help, type warphelp()

David’s manual refers to starting warp by calling it directly from the terminal. I have not been
able to do so yet. In order to execute a warp script, you may thus run the following command:

execfile("Filename.py")

For the rest, WARP is rather well explained by David P. Grote’s manual[1]. It will therefore
not be repeated her. A personal recommendation is to append all the WARP code into a single
file. The comments in this file are really useful in order to understand some of the syntax of WARP
command and to find the commands that will do what you want.

3.3 Using Gist
Gist is the plotting package used by WARP. When you run a simulation in warp and enable graph-
ical output, the simulation produces a .cgm file. CGM stands from Computer Graphics Metafile.
Alternatively a PostScript file can be produced by setting makepsfile to true when setting up the
graphical output in WARP. This can be done with the following line in WARP:

setup(makepsfile=0)

It is not recommended to set the graphical output to Postscript, since this creates much bigger files.
If the output is kept to CGM, as suggested, the files must be read via gist. In order to open the
cgm files, you must leave WARP and from the command line open the cgm files using:

gist filename.cgm

This should create a similar ouput to the following:

moensv@moensv-desktop:~/Dropbox/Fermilab/Results/130731$ gist
tbench_1307310432_gun_B4V8.000.cgm

tbench_1307310432_gun_B4V8.000.cgm metafile description:
Wed Jul 31 04:32:12 2013; For: vmoens
gist>

At the same time it opens up a X-window which shows the results of the simulation. The first
page only contains the warp parameters that you also obtain when running import warp. You
may more forward and backwards in the CGM file by pressing f and b. You may also go directly
to given pages by typing the page number and then Enter. You can leave gist by either pressing q
when on the X-window or quit when focused on the terminal.

Alternatively you may also call gist without a specific file from the terminal by typing gist. This
opens an empty x-window and the gist command line. In the command line you have the following
command options:

• cgm - cgm command syntax: cgm cgmout [size]. Opens a CGM file cgmout for output.
The size (default 1000000) is the maximum size of a single file in the output family, in bytes.
Subsequent send commands will write to cgmout, unless the send to list is modified (see send).

• display - display command syntax: display host:server.screen [dpi]. Connects to the
specified X server. Subsequent draw commands will write to server, unless the draw to list is
modified (see draw). If specified, 40<=dpi<=200 (default 100).

• draw - draw command syntax: draw [page list]. Copy the page(s) (default current page)
from the current CGM input to all display output devices. By default, these are all X windows.
Use alternate syntax: draw to [device#1 ...] to specify a particular list of devices to be
used by the draw command. Without any device numbers, draw to restores the default list of
devices. (Use the info command to describe current device numbers.) Page list syntax: group1
[group2 ...]. Page group syntax: n just page n, m-n pages n thru m, m-n-s pages n thru m,
step s.

• eps - eps command syntax: eps epsout. Open an Encapsulated PostScript file epsout, write
the current page to it, then close epsout. (Note that an EPS file can have only a single page.)

June 8, 2014 16

Vince Moens Chapter 3. Using iPython, WARP, Gist, MPIRUN, PyMPI, qsub, qstat

• free - free command syntax: free [device# ...]. Finish and close the device#(s). If none
given, frees all send devices, (Use the info command to describe current device numbers.)

• help - This command explains specific syntax, for example help cgm describes the syntax of
the cgm command.

• info - info command syntax: info. Print descriptions of all current output files.

• open - open command syntax: open cgminput. Closes the current CGM input file, then
opens cgminput. Only a Gist-compliant binary CGM file is legal. The cgminput may be the
first file of a family. Subsequent page numbers refer to this input file.

• ps - ps command syntax: ps psout. Opens a PostScript file psout for output. Subsequent
send commands will write to psout, unless the send to list is modified (see send).

• quit - This command also has the synonyms exit and end.

• send - send command syntax: send [page list]. Copy the page(s) (default current page)
from the current CGM input to all display output devices. By default, these are all X windows.
Use alternate syntax: send to [device#1] to specify a particular list of devices to be
used by the send command. Without any device numbers, send to restores the default list of
devices. (Use the info command to describe current device numbers.) Page list syntax: group1
[group2 ...]. Page group syntax: n just page n, m-n pages n thru m, m-n-s pages n thru m,
step s.

3.4 Using mpirun and pyMPI
pyMPI allows the execution of python scripts in parallel mode. It is required on both, TEV and on
your personal computer. When running a script (textttScript.py) on a local computer, you should
enter the following command:

mpirun -np NUMBEROFCORES pyMPI Script.py

mpirun starts the parallel computation on NUMBEROFCODES amount of processors. You should see
that this number is less or equal to the number of cores available to your machine. It then starts
the parallel python interpreter pyMPI and runs the python script Script.py in it. This interpreter
is not interactive, you will still see the output of the simulation in your terminal.

On TEV, parallel executions are also made using pyMPI, but a run-file must be provided for
qsub. The general layout of the run-file is the following:

June 8, 2014 17

Vince Moens Chapter 3. Using iPython, WARP, Gist, MPIRUN, PyMPI, qsub, qstat

Listing 3.1: elens_complex_P9000VB0p3-5-0p3T.run

1 # execute with: qsub -l nodes=23:amd32 -q amd32⇒ This line gives the command that
you need to pass to the terminal for the
execution. It is explained later on.

Script.run -A uslarp
2

3 #!/bin/bash
4 #PBS -A uslarp ⇒ This sets the account under which the

script is to be run.5

6 #PBS -l nodes=23,walltime=24:00:00 ⇒ Defines number of nodes and the
wall time that the script requires on
TEV. See that the walltime is set
longer than you actually need. When
the script terminates, your spot on
TEV is automatically terminated. The
walltime provides a security in case your
script hangs up. After this time, your
simulation will be killed.

7

8

9

10

11

12

13

14

15 cd /fast/uslarp/vmoens/Scripts ⇒ Calling the Scripts directory.
16

17 /usr/local/openmpi/bin/mpiexec -npernode ⇒ mpiexec is used to execute the python
simulation on the number of nodes given
above, with PROCPERNODE amount of
processes per node (keep this low, so that
you have maximal amoutn of memory
available) and a total amount of processes
given by NUMBEROFPROCESSES.

PROCPERNODE -np NUMBEROFPROCESSES pyMPI Script.py
18

19

20

21

22

23 echo
24 exit Exits the simulation when the script is

complete.

June 8, 2014 18

Vince Moens Chapter 3. Using iPython, WARP, Gist, MPIRUN, PyMPI, qsub, qstat

3.5 Using qsub

As mentioned in the previous section, in order to run a simulation on TEV, scripts must be submitted
to the qsub-routine via a run-file. IT is not intended that scripts are run in your home directory on
TEV as you would do on your personal computer. The run-file is explained above. In order to send
it to qsub, copy the first line as of qsub to your terminal. For instance you would submit:

qsub -l nodes=23:amd32 -q amd32 Script.run -A uslarp

This submits the python script referenced in the run file Script.run to qsub using 23 amd32
nodes under the account of uslarp. For an explanation of amd32 and intel12 nodes, visit
www.tev.fnal.gov.

It is also possible to reserve a few nodes for interactive use on TEV. You should only do this for
development purposes and not for running standard python scripts. In this mode, if you connection
to TEV cancels, your script aborts. To run an interactive session, enter the following into your
Terminal on TEV:

qsub -l nodes=1 -q amd32 -A uslarp -I

In this case a single amd32 node is reserved on the account of uslarp in interactive mode.

3.6 Using qstat

You can use qstat to check the que for TEV. When you type qstat into the a TEV terminal you
obtain an output such as the following:

[vmoens@tev ~]$ qstat
Job id Name User Time Use S Queue
--
75858.tev FILENAME USERNAME 00:00:00 R long_phi

The first entry is the job id, it is a specific number that designates your run. NAME is the usually
is set to the filename of the script you are trying to run. USER is your user name on TEV. Time
Use indicates the total amount of time that the script has been running. Keep in mind that if you
use two cores, your time runs twice as fast, since each core counts separately. S signalizes the status
of the run. It will start with the letter Q indicating that your run is being queued and switch to
R when enough cores are free and you are next in line. The more cores you ask for your run, the
longer the wait will take since priorities are assigned according to number of cores. The column
Queue indicates which nodes you are targeting. For us, this should just be amd32 or intel12.

3.7 Checking the progress of a simulation and killing a job.

By appending -n to the qstat command, you may figure out on which nodes the script is running.
This allows you to login to those nodes and check the output of your script. To check the ouput log,
check your node name and write down your job-id number. Then login to the specific node (here
we use tev0501 as an example):

rlogin tev0501
cd /var/spool/PBS/spool/
cat JOBID.tev.fnal.gov.OU
cat JOBID.tev.fnal.gov.ER

June 8, 2014 19

www.tev.fnal.gov

Vince Moens Chapter 3. Using iPython, WARP, Gist, MPIRUN, PyMPI, qsub, qstat

You should use the first node that is listed when you run the command qstat -n. The first cat
command prints the run output to your command line. The second cat command prints the error
log to your command line.

In case a script is not running or you wish to delete it for some other reason, check the job ID
and type qdel JOBID into your command line.

3.8 Reloading a dumped simulation.

WARP allows for the possibility to dump simulations and reload them later on, so that you don’t
have to recompute everything. This procedure is called dumping and is started with the command
dump() in the script you run.

In a dump, each processor creates its own dump file, with a name like
test000250_00001_00004.dump. The first number is the time step, the second the proces-
sor number, and the third the number of processors.

In order to run a restart, you need to rerun everything in your script up to and including the
generate() command or the package "w3d". Then you are ready to call the restart

When you call restart, you only pass in the first part, for example restart(’test000250’).
The rest of the filename is generated automatically, with each processor reading in the appropriate
file. Note that the number of processors running the restart must be the same as the number used
when the dump was made.

At this point, your simulation has returned to the point where it was when you dumped it, you
may now continue producing plots or runnings steps.

June 8, 2014 20

Chapter 4

The TEV and vdisk1 computing
devices.

Up to now I have used 3 machines for WARP development. My personal computer, the super-cluster
TEV, the computer vdisk1.

For small personal code developments, you should use your own laptop. The computing power
should be sufficient. For larger development or test runs, use vdisk1. vdisk1 is only accessible
from inside the Fermilab computing network. If you are thus outside of Fermilab, you will have to
ssh into TEV and then further tunnel to vdisk1.

vdisk1 has 16 AMD opteron cores at 1.4 GHz with 2MB cache size. It furthermore has a total
of 32 GB of memory. With very large time steps, this device can handle full lens simulations. In
order to get an account, you should talk to Alexander Valishev.

TEV has several possible nodes available. You should use the intel12 nodes or the amd32 nodes.
The intel12 nodes consist of 26 dual socket, six core Intel Westmere CPU systems (12 cores/node,
312 cores in total). These nodes deliver a total of 2.37TFlop/s. Each Intel node has 12 GB of
1333MHz DDR3 memory available. The amd32 nodes refer to 34 quad-socket, eight-core AMD
Opteron CPU systems (32 cores/node), providing 6.2 TFlop/s. Each AMD node has 64 GB DDR2
memory.

On TEV it is also important to be aware of the various file systems. The systems available are
/usr/local, /home, /data and /fast.

The folder /usr/local contains the common user applications, compiler ans system tools. It is
backed up on a daily basis.

The folder /home is the user home directory and has a quota limit of 6 GB per user. It is also
backed up on a daily basis.

The folder /data is a storage area with 30 GB of quota limit. It is a good place to temporarily
place your simulation results.

The folder /fast is a high throughput scratch space with 30 GB quota limit per project. Project
here refers to the uslarp project. It has a throughput of 1GB/s in read and 750 MB/s in write.
Due to the large memory swaps of the Electron Lens Simulations, it is recommended to use this

June 8, 2014 21

Vince Moens Chapter 4. The TEV and vdisk1 computing devices.

space for running simulations. I have created a folder inside of the uslarp project with my own
user name to store my results.

June 8, 2014 22

Chapter 5

Explanation of current WARP scripts

This chapter explains the Hollow Electron Beam Lens script as it was at the time of drafting this
document. It may have been further developed in the meantime.

5.1 Naming of the scripts

I had produced several versions of the same script, with different settings pre-programmed. I will
therefore explain the naming of the HEBL scripts here. Before execution, all scripts start with the
name elens_complex, for example:

elens_complex_P9000VB0p3-5-0p3T.py

After the initial name, the potential P and the magnetic field B are appended. The execution of the
script automatically copies the script into the results folder, so that you know which script produced
what. The name then changes to:

TEL2s_1405281111_gun_P9000VB0p3-50p3T.py

Here the elens_complex is replaced with the name of the lens type TEL2s, the time of execution
(28 May 2014, 11:11) and the injection type (gun). All other result files have the same initial name,
with various other file endings such as .000.cgm and .run. The last is the run file used to execute
the script on TEV.

5.2 Explanation of current HEBL script

This section explains the current script for the simulations. The script is shown on the left and the
annotations are found in the right column. The arrows signalize the line to which the annotation
belongs. Additional vertical space was introduced at some points in the script in order to leave space
for the annotations. This should not affect the behavior of the script.

June 8, 2014 23

Vince Moens Chapter 5. Explanation of current WARP scripts

1

2 # AUTHOR: Vince Moens ⇒ Preambulatory statements.
3 # PROJECT: Master Thesis EPFL 2013
4

5 # NOTES ON EMITTANCE TYPES
6 # GUN: The code automatically injects particles

from the cathode conductor using Child Langmuir
law.

7 # PROFILE: Profiles measured in the test bench are
injected into the lattice. The gun is ommitted

fromt the lattice. Injection takes place at the
end of that anode.

8

9 ############################ ⇒ I use these formats to define sections
in the script10 # >>> Package Loading <<< #

11 ############################
12

13 from warp import * ⇒ Loading of all the packages necessary
to run the script.14 from datetime import *

15 import numpy as np
16

17 #########################
18 # >>> File Loading <<< #
19 #########################
20

21 # --- Profiles ---#
22 fns = [⇒ This list gives the locations of all

the density profiles that were measured
in the test stand for injection into the
simulations.

23 # new profiles acquired with ACL script
24 "../../HG1b/Profile/Results/Chart_Colors/

HG1b_121218_9p25A_3-3-3
kG_500V_51mA_b_57_8102_particles.txt", #0

25 "../../HG1b/Profile/Results/Chart_Colors/
HG1b_121218_9p25A_3-3-3
kG_8kV_2940mA_58_8099_particles.txt", #1

26

27 ...
28

29 "../../HG1b/Profile/Results/Chart_Colors/
HG1b_130521_9p25A_06-24-06
kG_3kV_924mA_135_8129_particles.txt", #62

30 "../../HG1b/Profile/Results/Chart_Colors/
HG1b_130521_9p25A_06-24-06
kG_4kV_1368mA_136_8192_particles.txt" #63

31]
32

33 Voltage=[500, 1000, 2000, 3000, 4000, 5000, 6000,⇒ List of possible cathode potentials
for the simulation. May be adjusted as
needed.

7000, 8000, 9000, 10000]
34

June 8, 2014 24

Vince Moens Chapter 5. Explanation of current WARP scripts

35 # --- Selecting profile ---#
36 item = 4 ⇒ Selecting the potential from Voltages.
37 Bmain = 5 ⇒ Magnetic field in main solenoid [Tesla]
38 print("\nMagetic Field in Main Solenoid: %g T" %

Bmain.)
39 Bgun = 0.3 ⇒ Magnetic field in gun solenoid [Tesla]
40 Bcoll = 0.3 ⇒ Mag. field in collector solenoid [Tesla]
41 Bbend = Bcoll/9.53 ⇒ Mag. field in bend solenoids [Tesla].
42 Cathode_Potential = -Voltage[item] ⇒ Setting the cathode potential
43 print("Cathode Potential: %g V" %

Cathode_Potential)
44 #Current=Current[item]
45 Current= pow(Voltage[item],1.5)*5.3e-6 ⇒ Setting the gun current according to

CLL with perveance from master thesis:
Vince Moens.

46 print("Current: %g A (approximate, exact value
determined by CLL" % Current)

47 npart= 500*Current/0.06 ⇒ Setting number of macro-particles.
Relation through trial and error.48

49 compact_factor = 10 ⇒ A factor which reduces the number of
simulation time steps performed, which
is used when choosing the large-timestep
particle mover for arbitrarily magneticed
species set later in the script.

50

51

52

53

54 file_ending = "P"+str(-Cathode_Potential)+"VB"+str⇒ Defines the file name ending, given by
the simulation parameters(int(Bgun*10))+"-"+str(int(Bmain*10))+"-"+str(int

(Bcoll*10))+"kG"
55

56 ################### ⇒ In this section we define the shape and
injection type of the simulation.57 # >>> Options <<< #

58 ###################
59

60 machine_type = "TEL2s" ⇒ Choose the machien type. Options are
test bench (tbench), TEL setup (TEL)
and a straightened version of the TEL
(TELs)

61 print("Machine type is: "+machine_type+" setup")
62 if ((machine_type != "tbench") and (machine_type

!= "TEL2") and (machine_type != "TEL2s")):
63 print("Wrong machine type!")
64 quit()
65 machine_injtype = "gun" ⇒ Set the injection type: profile or gun.
66 print("Injection type is: "+machine_injtype+"

injection \n")
67 if (machine_injtype=="gun"): ⇒ Sets the injection type: space-charge

limited (CLL)(2) or constant current (1).68 machine_emittype = 2
69 elif (machine_injtype=="profile"):
70 machine_emittype = 1
71 else:
72 print("Wrong machine_injtype!!")
73 quit()
74

75

76

June 8, 2014 25

Vince Moens Chapter 5. Explanation of current WARP scripts

77 ####################
78 # >>> Headers <<< #
79 ####################
80

81 now=datetime.now() ⇒ These variables set the current time
and date used for file saving.82 date=now.strftime("%y%m%d")

83 time=now.strftime("%H%M")
84

85 #if not os.path.exists("../Results/"+date+"/"): ⇒ This was an attempt to have the
date folders in which the output is saved
generated automatically by the script. It
was commented because it was causing
too many problems.

86 # os.makedirs("../Results/"+date+"/")
87 # print("New day folder created \n")
88

89

90 os.system("cp elens_complex_P"+str(- ⇒ This copies the python script being
executed to the results folder.Cathode_Potential)+"VB"+str(int(Bgun*10))+"-"+str

(int(Bmain*10))+"-"+str(int(Bcoll*10))+"kG.py ../
Results/"+date+"/"+machine_type+"_"+date+time+"_P
"+str(-Cathode_Potential)+"VB"+str(int(Bgun*10))+
"-"+str(int(Bmain*10))+"-"+str(int(Bcoll*10))+"kG
.py")

91 os.system("cp elens_complex_P"+str(- ⇒ This copies the run-script used for
qsub to the results folder.Cathode_Potential)+"VB"+str(int(Bgun*10))+"-"+str

(int(Bmain*10))+"-"+str(int(Bcoll*10))+"kG.run
../Results/"+date+"/"+machine_type+"_"+date+time+
"_P"+str(-Cathode_Potential)+"VB"+str(int(Bgun
*10))+"-"+str(int(Bmain*10))+"-"+str(int(Bcoll
*10))+"kG.run")

92

93 top.runid = machine_type+"_"+date+time+"_"+ ⇒ Setting the filename for the run
machine_injtype+"_"+file_ending

94 if machine_type == "tbench": ⇒ Setting the top line descriptor for
the run. This appears on the graphical
output.

95 top.pline2 = "Electron Lens Test Bench"
96 else: top.pline2 = "Tevatron Electron Lens 2"
97 if machine_emittype == 1: ⇒ Setting the seond line description for

the gist output.It reads the emission type
and injection type.

98 top.pline1 = "Constant-injection_" +
machine_injtype

99 elif machine_emittype == 2:
100 top.pline1 = "Child-Langmuir_" + machine_injtype
101 else: top.pline1 = "other injection method"
102 top.runmaker = "V. Moens" ⇒ Sets the name of the individual

running the simulation.103

104

105

106

107

108

109

110

111

June 8, 2014 26

Vince Moens Chapter 5. Explanation of current WARP scripts

112 ##################### ⇒ This section sets the lengths and
shape of the various lens elements.
Measurements were mostly taken from
the AutoCAD files. The descriptors will
be described very briefly.

113 # >>> Variables <<< #
114 #####################
115

116 # --- Machine Parameters ---#
117 machine_zstart = .0e0 ⇒ Baginning of Lens [m]
118 if machine_type == "tbench": ⇒ Distance from anode to collector [m]
119 machine_syslen = 2.86
120 elif ((machine_type == "TEL2") or

(machine_type == "TEL2s")):
121 machine_syslen = 4.68581
122 machine_zplat = machine_syslen ⇒ Postion: diagnostic screen [m]
123 machine_piperad = 3*cm ⇒ Inner pipe radius [m]
124 zfinal = machine_zstart + machine_syslen

⇒ Pinnhole position [m]
125

126 # --- Electron Gun ---#
127 # - Cathode
128 Cathode_zstart = -29.25*mm ⇒ Start of cathode
129 Cathode_zend = 0.0*mm ⇒ End of cathode
130 Cathode_radi = 6.75*mm ⇒ Inner cathode radius
131 Cathode_rado = 12.7*mm ⇒ Outer cathode radius
132 Cathode_radcurvb = 10*mm ⇒ Inner radius of curvature
133 Cahtode_radcurvs = 0.5*mm ⇒ Outer radius of curvature
134 Cathode_voltage = Cathode_Potential ⇒ Cathode voltage [V]
135 # - Anode
136 #The values were taken from a drawing printed on

tabloid paper and a conversion rate of 2.25mm(
real)/mm(drawing)

137 Anode_zstart = 9.48*mm ⇒ Start of Anode
138 Anode_z1 = Anode_zstart + 1.5*mm ⇒ z1, . . . , z5 together with r1, . . . ,

r5 designate vertices in the z-r plane
for the anode shape. These are turned
into 3D conductors through surfaces of
revolution.

139 Anode_z2 = Anode_zstart + 3.5*mm
140 Anode_z3 = Anode_z1 + 9*mm
141 Anode_z4 = Anode_z3 + 11.25*mm
142 Anode_z5 = Anode_z4 + 5.625*mm
143 Anode_zend = Anode_z5 + 58.5*mm ⇒ End of Anode on z-axis
144 Anode_ri = 14.25*mm
145 Anode_ro = Anode_ri+5.33*mm
146 Anode_r1 = Anode_ri
147 Anode_r2 = Anode_ro
148 Anode_r3 = Anode_ri
149 Anode_r4 = Anode_ri + 0.675*mm
150 Anode_radtipi = Anode_ri + 1.5*mm
151 Anode_radtipo = Anode_ro -3.5*mm
152 Anode_r5 = Anode_ri + 5.625*mm
153 Anode_rendi = Anode_r5 ⇒ Inner radius at anode end
154 Anode_rendo = Anode_rendi + 1.35*mm ⇒ Outer radius at anode end
155

156

June 8, 2014 27

Vince Moens Chapter 5. Explanation of current WARP scripts

157 Anode_radcurvb = 3.5*mm ⇒ radcurvb and radcurvs designate the
larger and smaller radius of curvatures
used to describe the curvature at the end
and beginning of the anode.

158 Anode_radcurvs = -1.5*mm
159

160

161 Anode_voltage = 0.0e0 ⇒ Anode voltage [V]
162 # - Electrode F ⇒ Inner electrode
163 ElectrodeF_zstart = Cathode_zstart
164 ElectrodeF_zend = 0.98*mm
165 ElectrodeF_z1 = ElectrodeF_zend -0.5*mm
166 ElectrodeF_z2 = ElectrodeF_zend -1.4*mm
167 ElectrodeF_ri = 13.1*mm
168 ElectrodeF_ro = ElectrodeF_ri + 1.9*mm
169 ElectrodeF_r1 = ElectrodeF_ri + 0.5*mm
170 ElectrodeF_radcurvs = -0.5*mm
171 ElectrodeF_radcurvb = 1.4*mm
172 ElectrodeF_voltage = Cathode_Potential
173 # - Electrode C ⇒ Outer electrode
174 ElectrodeC_zstart = Cathode_zstart
175 ElectrodeC_zend = 1.97*mm
176 ElectrodeC_ri = 20.5*mm
177 ElectrodeC_ro = 22.0*mm
178 ElectrodeC_radcurv = 0.75*mm
179 ElectrodeC_z1 = ElectrodeC_zend-0.75*mm
180 ElectrodeC_voltage = Cathode_Potential
181 # - Gun drift pipe ⇒ Drift pipe of the lens
182 Gun_pipe_zstart = 84.375*mm
183 Gun_pipe_zend = 178.875*mm
184 Gun_pipe_ri = 36*mm #Should this not be 3

cm?
185 Gun_pipe_ro = 33.75*mm
186 Gun_pipe_voltage = 0.0
187

188 if machine_type == "tbench": ⇒ This sets the test bench setup. It is
only activated if the lens type is set to
tbench.

189 # ----Solenoids ---#
190 # - Gun Solenoid
191 tbench_solenoid_gun_zstart = -13*cm
192 tbench_solenoid_gun_zend = 37*cm
193 tbench_solenoid_gun_radi = 28*cm
194 tbench_solenoid_gun_rado =

tbench_solenoid_gun_radi+5.433*cm
195 tbench_solenoid_gun_b = Bgun ⇒ Maximum axial B field [T]
196

197 # - Main Solenoid
198 tbench_solenoid_main_zstart = 0.60
199 tbench_solenoid_main_zend = 2.52
200 tbench_solenoid_main_radi = 0.20
201 tbench_solenoid_main_rado =

tbench_solenoid_main_radi+14.48*cm
202 tbench_solenoid_main_b = Bmain ⇒ Maximum axial B field [T]

June 8, 2014 28

Vince Moens Chapter 5. Explanation of current WARP scripts

203 # - Collector Solenoid
204 tbench_solenoid_col_zstart = 2.67
205 tbench_solenoid_col_zend = 3.17
206 tbench_solenoid_col_radi = 28*cm
207 tbench_solenoid_col_rado =

tbench_solenoid_col_radi + 5.433*cm
208 tbench_solenoid_col_b = Bcoll ⇒ Maximum axial B field [T]
209

210 # --- Drift Spaces ---#
211 # - First Drift
212 tbench_drift1_zstart = 37*cm
213 tbench_drift1_zend = 0.60
214 tbench_drift1_ap = machine_piperad ⇒ Drift pipe aperture [m]
215 # - Second Drift
216 tbench_drift2_zstart = 2.52
217 tbench_drift2_zend = 2.67
218 tbench_drift2_ap = machine_piperad ⇒ Drift pipe aperture [m]
219

220 elif ((machine_type == "TEL2") or (machine_type⇒ This line sets the Tevatron Electron
Lens genometry, in case this setup is
chosen.

== "TEL2s")):
221 # --- Solenoids ---#
222 # - Gun Solenoid
223 TEL2_solenoid_gun_zstart = -167.1*mm
224 TEL2_solenoid_gun_length = 330*mm
225 TEL2_solenoid_gun_zend =

TEL2_solenoid_gun_zstart+
TEL2_solenoid_gun_length

226 TEL2_solenoid_gun_radi = 120*mm
227 TEL2_solenoid_gun_rado = 248*mm
228 TEL2_solenoid_gun_b = Bgun ⇒ Maximum axial B field [T]
229

230 # --- Bend Solenoids ---#
231 # - first bend starting from gun
232 TEL2_bendsol1_gun_zstart = Cathode_zend +

281.6*mm
233 TEL2_bendsol1_gun_zend =

TEL2_bendsol1_gun_zstart + 90*mm
234 TEL2_bendsol1_gun_length = 90*mm
235 TEL2_bendsol1_gun_ri = 193*mm
236 TEL2_bendsol1_gun_ro = 265*mm
237 TEL2_bendsol1_gun_b = Bbend ⇒ Maximum axial B field [T]
238

239

240

241 # - first bend starting from gun
242 TEL2_bendsol2_gun_zstart =

TEL2_bendsol1_gun_zend + 52.9*mm
243 TEL2_bendsol2_gun_zend =

TEL2_bendsol2_gun_zstart + 90*mm

June 8, 2014 29

Vince Moens Chapter 5. Explanation of current WARP scripts

244 TEL2_bendsol2_gun_length = 90*mm
245 TEL2_bendsol2_gun_ri = 193*mm
246 TEL2_bendsol2_gun_ro = 265*mm
247 TEL2_bendsol2_gun_b = Bbend ⇒ Maximum axial B field [T]
248

249 # - first bend starting from gun
250 TEL2_bendsol3_gun_zstart =

TEL2_bendsol2_gun_zend + 52.9*mm
251 TEL2_bendsol3_gun_zend =

TEL2_bendsol3_gun_zstart + 90*mm
252 TEL2_bendsol3_gun_length = 90*mm
253 TEL2_bendsol3_gun_ri = 193*mm
254 TEL2_bendsol3_gun_ro = 265*mm
255 TEL2_bendsol3_gun_b = Bbend ⇒ Maximum axial B field [T]
256

257 # - Main Solenoid
258 TEL2_solenoid_main_zstart =

TEL2_bendsol3_gun_zend + 82.8*mm
259 TEL2_solenoid_main_length = 2688.5*mm
260 TEL2_solenoid_main_zend =

TEL2_solenoid_main_zstart+
TEL2_solenoid_main_length

261 TEL2_solenoid_main_radi = 42.75*mm
262 TEL2_solenoid_main_rado = 241*mm
263 TEL2_solenoid_main_b = Bmain ⇒ Maximum axial B field [T]
264

265 # --- Bend Solenoids ---# ### ---These
are in a linear alignment. We need to put them
in a bent alignment

266 # - first bend starting from gun
267 TEL2_bendsol1_col_zstart =

TEL2_solenoid_main_zend + 82.8*mm
268 TEL2_bendsol1_col_zend =

TEL2_bendsol1_col_zstart + 90*mm
269 TEL2_bendsol1_col_length = 90*mm
270 TEL2_bendsol1_col_ri = 193*mm
271 TEL2_bendsol1_col_ro = 265*mm
272 TEL2_bendsol1_col_b = Bbend ⇒ Maximum axial B field [T]
273

274 # - first bend starting from gun
275 TEL2_bendsol2_col_zstart =

TEL2_bendsol1_col_zend + 52.9*mm
276 TEL2_bendsol2_col_zend =

TEL2_bendsol2_col_zstart + 90*mm
277 TEL2_bendsol2_col_length = 90*mm
278 TEL2_bendsol2_col_ri = 193*mm
279 TEL2_bendsol2_col_ro = 265*mm
280 TEL2_bendsol2_col_b = Bbend ⇒ Maximum axial B field [T]
281

June 8, 2014 30

Vince Moens Chapter 5. Explanation of current WARP scripts

282 # - first bend starting from gun
283 TEL2_bendsol3_col_zstart =

TEL2_bendsol2_col_zend + 52.9*mm
284 TEL2_bendsol3_col_zend =

TEL2_bendsol3_col_zstart + 90*mm
285 TEL2_bendsol3_col_length = 90*mm
286 TEL2_bendsol3_col_ri = 193*mm
287 TEL2_bendsol3_col_ro = 265*mm
288 TEL2_bendsol3_col_b = Bbend ⇒ Maximum axial B field [T]
289

290 # - Col Solenoid
291 TEL2_solenoid_col_zstart =

TEL2_solenoid_main_zend + 548.26*mm
292 TEL2_solenoid_col_length = 345*mm
293 TEL2_solenoid_col_zend =

TEL2_solenoid_col_zstart+
TEL2_solenoid_col_length

294 TEL2_solenoid_col_radi = 120*mm
295 TEL2_solenoid_col_rado = 248*mm
296 TEL2_solenoid_col_b = Bcoll ⇒ Maximum axial B field [T]
297

298 # --- Beam size & position ---#
299 beama0 = 17.5e0*mm [0cm] ⇒ Beam size in X [m]
300 beamb0 = 17.5e0*mm [0cm] ⇒ Beam size in Y [m]
301 beamap0 = .0e0*mm [0cm] ⇒ Beam divergence in X [mx

mz
]

302 beambp0 = .0e0*mm ⇒ Beam divergence in Y [mx/mz]
303 beamx0 = .0e0*mm ⇒ Beam centroid in X [m]
304 beamy0 = .0e0*mm ⇒ Beam centroid in Y [m]
305 beamxp0 = .0e0*mm ⇒ Beam centroid velocity in X [m/s]
306 beamyp0 = .0e0*mm ⇒ Beam centroid velocity in Y [m/s]
307

308 # --- Beam inject parameters ---#
309 beamxinject = .0e0*mm ⇒ Injected beam centroid in X [m]
310 beamyinject = .0e0*mm ⇒ Injected beam centroid in Y [m]
311 beamxpinject = .0e0*mm ⇒ Injected beam cent. x-velocity [m/s]
312 beamypinject = .0e0*mm ⇒ Injected beam cent. y-velocity [m/s]
313 beamainject = 17.5*mm ⇒ Injected beam radius in X [m]
314 beambinject = 17.5*mm ⇒ Injected beam radius in Y [m]
315 beamapinject = .0e0*mm ⇒ Injected beam divergence in X [m]
316 beambpinject = .0e0*mm ⇒ Injected beam divergence in Y [m]
317 beamainjmin = 6.75*mm ⇒ Injected beam inner radius in X [m]
318 beambinjmin = 6.75*mm ⇒ Injected beam inner radius in Y [m]
319 beamzinject = machine_zstart ⇒ Beam injection z-position [m]
320

321

322

323

324

325

June 8, 2014 31

Vince Moens Chapter 5. Explanation of current WARP scripts

326 ################### ⇒ Up to now we have defined a lot
of parameters and variables describing
the electron lens setup. Now the actual
computations and WARP codes start.

327 # >>> Script <<< #
328 ###################
329

330 #------------------------------#
331 # Invoke setup routine #
332 #------------------------------#
333

334 setup(makepsfile=0) ⇒ setup initiates the graphical output.
Postscript ouput in this case is turned of,
measning that cgm files will be produced
for use with gist.

335

336

337

338 winon() ⇒ This turns on the x-window which runs
next to the simulation. This is completely
pointless when running on TEV.

339

340

341 palette("ImageJ_Fire.gp") ⇒ This defines the colorpalette that is to
be used for graphical output.342

343 top.dipdioset = false ⇒ Turns of the automatic generation of
dipoles for bends.344

345 #---------------------------#
346 # Particle Loading #
347 #---------------------------#
348

349 if (machine_injtype == "profile"): ⇒ Particles only need to be loaded if the
inject type is set to profile.350 print("Reading particle positions...")

351 posi = fromfile(fns[item], sep=’ ’) ⇒ Imnports particle positions, reading x
and y positions consecutively, given they
are separated by a blank space.

352

353

354 npart = len(posi)/2 ⇒ Calculates the number of particles that
have been read into the simulation.355

356 posi = reshape(posi, (npart,2)) ⇒ Reorders the input into two columns
with x and y positions respectively.357 print("Calculating charge density according to

particle distribution...")
358 print("Number of macroparticles = %e" % npart)
359

360 #-----------------------------#
361 # Particle Properties #
362 #-----------------------------#
363

364 # --- Particle parameters ---#
365 electron_Iz = -Current ⇒ Beam current [Amps]. Should be

a approximation in case of space-charge
emission. WARP will adjust the current.

366

367

368 cyc_freq = echarge*Bmain/emass ⇒ Cyclotron frequency: fc = q
B×em

369 timestep = compact_factor*pi/(2*cyc_freq) ⇒ Timestep size t =
cf×π
2×fc

370 electron_vz = .0e0 ⇒ Beam velocity at emitting surface [m/s]
371 electron_ekin = -Cathode_Potential ⇒ Kinetic energy of electrons [eV]
372 electron_q = -1.e0 ⇒ Charge state of electrons []
373

June 8, 2014 32

Vince Moens Chapter 5. Explanation of current WARP scripts

374 vthz = .0e0 ⇒ Thermal Velocity of particles [m/s].
Some thermal jitter should be added in
future simulations.

375

376

377 lrelativity = true ⇒ Whether relativistic effects should be
considered.378

379 relativity = true ⇒ Level of relativistic correctness (1:
scale transverse field by 1

γ2
)380

381 sw=int((-electron_Iz*timestep/echarge)/npart) ⇒ Macroparticle weight []
382 elec = Species(type=Electron,color=red,weight=sw)⇒ Definition of electrons
383 #prot = Species(type=Proton,color=green) ⇒ Definition of protons. Deactivated for

now.384

385 elec.ibeam = electron_Iz ⇒ Electron current [A]
386 print ("Beam Current: %g" % elec.ibeam)
387 elec.zion = electron_q ⇒ Electron charge state []
388 print ("Particle charge: %g" % elec.zion)
389 top.dt = timestep
390 print ("Cyclotron Frequency: %g" % cyc_freq)
391 print ("Timestep: %g" % top.dt)
392 elec.vbeam = electron_vz ⇒ The electron velocity is set to 0 since it

will be calculated from the kinetic energy.393 print ("Particle velocity: %g" % elec.vbeam)
394 elec.ekin = electron_ekin ⇒ Kinetic energy in z-direction [eV]
395 elec.aion = top.emass/top.amu ⇒ Electron atomic mass number
396 top.derivqty() ⇒ Turns on the calculation of electron

velocity from the kinetic energy.397

398 elec.lrelativ = lrelativity
399 elec.relativity = relativity
400 elec.vthz = vthz
401 #top.vthz = .5e0*top.vbeam*top.emit/sqrt(top.a0*

top.b0)
402 #ebeam=(-Cathode_voltage)*echarge+emass*clight**2
403 #vbeam=clight*numpy.sqrt(1-(emass*clight**2)**2/

ebeam**2)
404 nsteps = 1.2*machine_syslen/elec.vbeam/timestep ⇒ Calculated the number of time steps

needed. It is increased by the factor 1.2
empirically to compensate for the reduced
electron velocity near the cathode.

405 print("The number of time steps is: %f steps \n" %
nsteps)

406 #---------------------#
407 # Beam Design #
408 #---------------------#
409

410 # - size
411 elec.a0 = Cathode_rado ⇒ Beam size in X
412 elec.b0 = Cathode_rado ⇒ Beam size in Y
413 elec.ap0 = beamap0 ⇒ Beam divergance in X
414 elec.bp0 = beambp0 ⇒ Beam divergance in Y
415 # - centroid
416 elec.x0 = beamx0 ⇒ Initial beam centroid in x
417 elec.xp0 = beamxp0 ⇒ Initial beam centroid in vx/vz
418 elec.y0 = beamy0 ⇒ Initial beam centroid in y
419 elec.yp0 = beamyp0 ⇒ Initial beam centroid in vy/vz

June 8, 2014 33

Vince Moens Chapter 5. Explanation of current WARP scripts

420 #-------------------#
421 # Injection #
422 #-------------------#
423

424 # --- Beam Injection ---#
425 elec.npmax = npart ⇒ Sets the maximum number of macro-

particles to be injected.426

427 top.inject = machine_emittype ⇒ Defines the type of particle injection.
0: turned off
1: constant current
2: space-charge limited (Child-Langmuir)
3: space-charge limited (Gauss’s law)
4: Richardson-Dushman emission
5: mixed Richardson-Dushman and CLL
6: user specified emission distribution
7: Taylor-Langmuir ionic emission
8: mixed Taylor-Langmuir and CLL

428

429

430

431

432

433

434

435

436

437 top.zinject[0] = beamzinject ⇒ z-Position of the injection source
438

439 # --- Injection Specific Setup ---#
440

441 if (machine_injtype=="gun"): ⇒ Only when injection is set to "gun":
442 elec.npinject = int(npart**2*sw*elec.sq/(elec.⇒ Sets the number of particles injected

per timestep. npinject= n2×mw×qe
Ie×tdel×nsteps

ibeam*timestep*nsteps))
443 print("number of particles injected per time

step: %g" % elec.npinject)
444

445 top.xinject[0] = beamxinject ⇒ X location of injection source.
446 top.yinject[0] = beamyinject ⇒ Y location of injection source.
447 top.xpinject[0] = beamxpinject ⇒ vx/vz of injected particles.
448 top.ypinject[0] = beamypinject ⇒ vy/vz of injected particles.
449 top.ainject[0] = elec.a0 ⇒ Width of injection in x.
450 top.binject[0] = elec.b0 ⇒ Width of injection in y.
451 top.ainjmin[0] = Cathode_radi ⇒ Minimum of injection in x.
452 top.binjmin[0] = Cathode_radi ⇒ Minimum of injection in y.
453 top.apinject[0] = beamapinject ⇒ Convergence angle of injection in x.
454 top.bpinject[0] = beambpinject ⇒ Convergence angle of injection in y.
455 top.vzinject[0,0] = 0.0 ⇒ Longitudinal velocity at injector

source.456 top.vinject[0] = Cathode_Potential
⇒ Sets injector voltage [V]

457

458 if machine_injtype == ’profile’: ⇒ Only when injection is set to "profile":
459 xinit = posi[:,0] * mm ⇒ Defines x and y Position of injected

particles.460 yinit = posi[:,1] * mm
461 zinit = zeros(npart) ⇒ Sets z-Position to 0 for particles.
462 vxinit = zeros(npart) ⇒ Sets x and y velocity to 0
463 vyinit = zeros(npart)
464 vzinit = zeros(npart) + elec.vbeam ⇒ Sets z velocity to the beam velocity.
465 def hollow_cathode_source(): ⇒ Defines the injection of the measured

beam profiles at the cathodes.466

June 8, 2014 34

Vince Moens Chapter 5. Explanation of current WARP scripts

467 if w3d.inj_js == elec.jslist[0]: ⇒ Check whether the electrons are set to
be injected.468

469 w3d.npgrp = npart ⇒ Defines number of particles to be
injected per timestep.470

471 gchange(’Setpwork3d’) ⇒ Changes allocation of dynamic arrays
in specified group.472

473

474 w3d.xt[:] = xinit ⇒ Allocation of positions defined above
to the field mesh given by the package
W3D

475 w3d.yt[:] = yinit
476 w3d.zt[:] = top.zinject
477 w3d.uxt[:] = vthz
478 w3d.uyt[:] = vthz
479 w3d.uzt[:] = elec.vbeam
480 # w3d.uzt[:] = top.vbeam
481

482 installuserparticlesinjection(⇒ Installtion of the source "hollow
_cathode_source" into the system.hollow_cathode_source)

483

484 #-----------------#
485 # Lattice #
486 #-----------------#
487

488 top.diposet = false ⇒ Whether to set dipoles in bends
automatically.489

490 # The zero point is at the cathode ⇒ These next few lines define the
solenoids and drifts. Inside the brackets,
the start, end, inner and outer radi are
defined. Furthermore the magnetic fields
of each solenoid are defined. Bends are
currently commented out, because there
persists a problem with the beam not
properly following the bends around the
corner. This is the next thing that should
be improved in this code.

491 if machine_type == "tbench":
492 # - Gun Solenoid
493 addnewsolenoid(zi=tbench_solenoid_gun_zstart, zf

=tbench_solenoid_gun_zend, ri=
tbench_solenoid_gun_radi, ro=
tbench_solenoid_gun_rado, maxbz=
tbench_solenoid_gun_b)

494 # - Drift before main solenoid
495 addnewdrft(zs=0.37, ze=0.60, ap=machine_piperad)
496 # - Main Solenoid
497 addnewsolenoid(zi=tbench_solenoid_main_zstart,

zf=tbench_solenoid_main_zend, ri=
tbench_solenoid_main_radi, ro=
tbench_solenoid_main_rado, maxbz=
tbench_solenoid_main_b)

498 # - Drift after main solenoid
499 addnewdrft(zs=2.52, ze=2.67, ap=machine_piperad)
500 # - Collector Solenoid
501 addnewsolenoid(zi=tbench_solenoid_col_zstart, zf

=tbench_solenoid_col_zend, ri=
tbench_solenoid_col_radi, ro=
tbench_solenoid_col_rado, maxbz=
tbench_solenoid_col_b)

502

June 8, 2014 35

Vince Moens Chapter 5. Explanation of current WARP scripts

503 elif machine_type == "TEL2s":
504 # - Gun Solenoid
505 addnewsolenoid(zi=TEL2_solenoid_gun_zstart, zf=

TEL2_solenoid_gun_zend, ri=
TEL2_solenoid_gun_radi, ro=
TEL2_solenoid_gun_rado, maxbz=
TEL2_solenoid_gun_b)

506 # - Bend
507 #addnewbend(zs=TEL2_solenoid_gun_zend,ze=

TEL2_solenoid_main_zstart,rc=(
TEL2_solenoid_main_zstart-
TEL2_solenoid_gun_zend)/1.02) #Bend angle is

508 # - 3 Bends before main solenoid
509 addnewsolenoid(zi=TEL2_bendsol1_gun_zstart, zf=

TEL2_bendsol1_gun_zend, ri=TEL2_bendsol1_gun_ri
, ro=TEL2_bendsol1_gun_ro, maxbz=
TEL2_bendsol1_gun_b)

510 addnewsolenoid(zi=TEL2_bendsol2_gun_zstart, zf=
TEL2_bendsol2_gun_zend, ri=TEL2_bendsol2_gun_ri
, ro=TEL2_bendsol2_gun_ro, maxbz=
TEL2_bendsol2_gun_b)

511 addnewsolenoid(zi=TEL2_bendsol3_gun_zstart, zf=
TEL2_bendsol3_gun_zend, ri=TEL2_bendsol3_gun_ri
, ro=TEL2_bendsol3_gun_ro, maxbz=
TEL2_bendsol3_gun_b)

512 # - Main Solenoid
513 addnewsolenoid(zi=TEL2_solenoid_main_zstart, zf=

TEL2_solenoid_main_zend, ri=
TEL2_solenoid_main_radi, ro=
TEL2_solenoid_main_rado, maxbz=
TEL2_solenoid_main_b)

514 # - Bend
515 #addnewbend(zs=TEL2_solenoid_main_zend, ze=

TEL2_solenoid_col_zstart,rc=(
TEL2_solenoid_col_zstart-
TEL2_solenoid_main_zend)/1.02)

516 # - 3 Bends after main solenoid
517 addnewsolenoid(zi=TEL2_bendsol1_col_zstart, zf=

TEL2_bendsol1_col_zend, ri=TEL2_bendsol1_col_ri
, ro=TEL2_bendsol1_col_ro, maxbz=
TEL2_bendsol1_col_b)

518 addnewsolenoid(zi=TEL2_bendsol2_col_zstart, zf=
TEL2_bendsol2_col_zend, ri=TEL2_bendsol2_col_ri
, ro=TEL2_bendsol2_col_ro, maxbz=
TEL2_bendsol2_col_b)

519 addnewsolenoid(zi=TEL2_bendsol3_col_zstart, zf=
TEL2_bendsol3_col_zend, ri=TEL2_bendsol3_col_ri
, ro=TEL2_bendsol3_col_ro, maxbz=
TEL2_bendsol3_col_b)

June 8, 2014 36

Vince Moens Chapter 5. Explanation of current WARP scripts

520 # - Collector Solenoid
521 addnewsolenoid(zi=TEL2_solenoid_col_zstart, zf=

TEL2_solenoid_col_zend, ri=
TEL2_solenoid_col_radi, ro=
TEL2_solenoid_col_rado, maxbz=
TEL2_solenoid_col_b)

522

523 elif machine_type == "TEL2":
524 # - Gun Solenoid
525 addnewsolenoid(zi=TEL2_solenoid_gun_zstart, zf=

TEL2_solenoid_gun_zend, ri=
TEL2_solenoid_gun_radi, ro=
TEL2_solenoid_gun_rado, maxbz=
TEL2_solenoid_gun_b)

526 # - Bend
527 addnewbend(zs=TEL2_solenoid_gun_zend,ze=

TEL2_solenoid_main_zstart,rc=(
TEL2_solenoid_main_zstart-
TEL2_solenoid_gun_zend)/1.02) #Bend angle is

528 # - 3 Bends before main solenoid
529 addnewsolenoid(zi=TEL2_bendsol1_gun_zstart, zf=

TEL2_bendsol1_gun_zend, ri=TEL2_bendsol1_gun_ri
, ro=TEL2_bendsol1_gun_ro, maxbz=
TEL2_bendsol1_gun_b)

530 addnewsolenoid(zi=TEL2_bendsol2_gun_zstart, zf=
TEL2_bendsol2_gun_zend, ri=TEL2_bendsol2_gun_ri
, ro=TEL2_bendsol2_gun_ro, maxbz=
TEL2_bendsol2_gun_b)

531 addnewsolenoid(zi=TEL2_bendsol3_gun_zstart, zf=
TEL2_bendsol3_gun_zend, ri=TEL2_bendsol3_gun_ri
, ro=TEL2_bendsol3_gun_ro, maxbz=
TEL2_bendsol3_gun_b)

532 # - Main Solenoid
533 addnewsolenoid(zi=TEL2_solenoid_main_zstart, zf=

TEL2_solenoid_main_zend, ri=
TEL2_solenoid_main_radi, ro=
TEL2_solenoid_main_rado, maxbz=
TEL2_solenoid_main_b)

534 # - Bend
535 addnewbend(zs=TEL2_solenoid_main_zend, ze=

TEL2_solenoid_col_zstart,rc=(
TEL2_solenoid_col_zstart-
TEL2_solenoid_main_zend)/1.02)

536 # - 3 Bends after main solenoid
537 addnewsolenoid(zi=TEL2_bendsol1_col_zstart, zf=

TEL2_bendsol1_col_zend, ri=TEL2_bendsol1_col_ri
, ro=TEL2_bendsol1_col_ro, maxbz=
TEL2_bendsol1_col_b)

June 8, 2014 37

Vince Moens Chapter 5. Explanation of current WARP scripts

538 addnewsolenoid(zi=TEL2_bendsol2_col_zstart, zf=
TEL2_bendsol2_col_zend, ri=TEL2_bendsol2_col_ri
, ro=TEL2_bendsol2_col_ro, maxbz=
TEL2_bendsol2_col_b)

539 addnewsolenoid(zi=TEL2_bendsol3_col_zstart, zf=
TEL2_bendsol3_col_zend, ri=TEL2_bendsol3_col_ri
, ro=TEL2_bendsol3_col_ro, maxbz=
TEL2_bendsol3_col_b)

540 # - Collector Solenoid
541 addnewsolenoid(zi=TEL2_solenoid_col_zstart, zf=

TEL2_solenoid_col_zend, ri=
TEL2_solenoid_col_radi, ro=
TEL2_solenoid_col_rado, maxbz=
TEL2_solenoid_col_b)

542

543 # >>> Set input parameters describing the 3d
simulation. ⇒ These three lines define the grid on

which the WARP Particle in Cell code
works.

544

545

546 w3d.nx = 32 ⇒ Number of grid points in x
547 w3d.ny = 32 ⇒ Number of grid points in y
548 w3d.nz = 256 ⇒ Number of grid points in z
549 top.prwall = machine_piperad ⇒ This defines the wall of the simulation,

the point at which particles are scraped.
If it is set to 0, then the biggest cylinder
is used that fits into the simulation mesh.

550

551

552

553 # >>> Set to finite beam. ⇒ Sets the dimensions of the mesh in the
physical space.554

555 w3d.xmmin = -machine_piperad ⇒ mesh minimum in x [m]
556 w3d.xmmax = machine_piperad ⇒ mesh maximum in x [m]
557 w3d.ymmin = -machine_piperad ⇒ mesh minimum in y [m]
558 w3d.ymmax = machine_piperad ⇒ mesh maximum in y [m]
559 w3d.zmmin = machine_zstart ⇒ mesh minimum in z [m]
560 w3d.zmmax = machine_syslen ⇒ mesh maximum in z [m]
561

562 dx = (w3d.xmmax-w3d.xmmin) / w3d.nx ⇒ Grid size in x [m]
563 dy = (w3d.ymmax-w3d.ymmin) / w3d.ny ⇒ Grid size in y [m]
564 dz = (w3d.zmmax-w3d.zmmin) / w3d.nz ⇒ Grid size in z [m]
565

566 # >>> Set up some diagnostic windows. ⇒ Window 0 is set to full mesh at
generation567

568 top.xwindows[:,1] = [-5.e-2,5.e-2] ⇒ "window" limits for y-z phase space
plots569

570 #top.rwindows[:,1] = [0.e0,.01e0] ⇒ radial "window" limits for z-vz phase
space plots571

572 top.zwindows[:,1] = [machine_zstart,2*elec.vbeam*⇒ "window" limits for x-y phase space
plotstop.dt]

573 top.zwindows[:,2] = [machine_syslen/2-elec.vbeam*
top.dt, machine_syslen/2+elec.vbeam*top.dt]

June 8, 2014 38

Vince Moens Chapter 5. Explanation of current WARP scripts

574 top.zwindows[:,3] = [machine_syslen-2*elec.vbeam*
top.dt, machine_syslen]

575

576 # >>> Time histories
577 elec.nhist = int(nsteps/10) ⇒ Interval between timesteps at which

history data is saved578

579 top.ifzmmnt = 2 ⇒ z moments calculation
(0:none, 1:global moments only, 2:full z
moments)

580

581

582 top.itmomnts[0:3]=[0,nsteps,elec.nhist] ⇒ time steps to do calculation of z
moments and print one-liner of info; first
3 are a do loop

583

584

585 top.zmmntmin = machine_zstart ⇒ Moments grid minimum in Z
586 top.zmmntmax = machine_syslen ⇒ Moments grid maximum in Z
587 top.nzmmnt = w3d.nz ⇒ Number of points in z moments grid.
588

589 #--- Setup Plots ⇒ For the following commands, the input
is given as a loop starting at 0 to nsteps
with the intervall given by the 3rd input.
Any further inputs are specific instances
to do the plots. The input right after the
plot command gives the windows in which
the plots should be performed.

590

591

592

593

594

595

596 top.itplps[0:3] = [0,nsteps,nsteps] ⇒ Time steps to do full set of phase space
plots; first 3 are a do loop597

598 # top.itplfreq[0:3] = [0,nsteps,nsteps/20] ⇒ time steps to do "frequent" phase
space plots; first 3 are a do loop599

600 top.itplalways[0:3] = [0,nsteps,nsteps] ⇒ time steps to do "always" plots; first 3
are a do loop601

602 top.itplseldom[0:3] = [0,nsteps,nsteps] ⇒ time steps to do "seldom" plots; first
3 are a do loop603

604 top.pboundnz = absorb ⇒ bound. cond. at iz = 0
605 top.pbound0 = absorb ⇒ bound. cond. at iz = nz
606 top.pboundxy = absorb ⇒ boundary conditions

at x and y boundaries. absorb/dirichlet:
absorption, reflect/neumann: reflection,
periodic: periodicity

607

608

609

610 # >>> set up field solver
611 w3d.solvergeom = w3d.XYZgeom ⇒ Defines the geometry of the field

solver. Radial, planar and 3D geometries
exist. You may look them up in the
WARP scripts.

612

613

614

615 w3d.bound0 = 1 ⇒ Type of boundary condition at plane
z=0616

617 w3d.boundnz = 1 ⇒ Type of bound. condition at plane
z=nz618

619 w3d.boundxy = 0 ⇒ Type of bound. condition at sides
0 is constant potential,
1 is zero normal derivative,
2 is periodic

620

621

June 8, 2014 39

Vince Moens Chapter 5. Explanation of current WARP scripts

622

623 if w3d.solvergeom == w3d.XYZgeom:
624 # >>> Set some flags only needed if using the 3d

solver
625 w3d.l4symtry = true ⇒ Turns on 4-fold symmetry to simplify

calculation. Might have to be turned of
to see full space-charge evolution.

626

627

628 top.fstype = 7 ⇒ Specifies the type of field solver to be
used.
-1: none
0: sine-sine-periodic FFT (the default),
1: 8-fold symmetric capacity matrix in
kz,
2: capacity matrix for quadrupoles,
3: (not used)
4: 2d sine-sine FFT + tridiag in z,
5: general capacity matrix in kz space,
6: general capacity matrix,
7: multigrid solver,
8: parallel solver (in development),
9: parallel solver (in development),
10: RZ multigrid solver,
11: Chombo AMR/multigrid solver,
12: Use field solver registered in python,
13: 3d multigrid, Boltzmann electrons

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646 f3d.mgparam = 1.2 ⇒ Acceleration param. for multigrid
solver647

648 f3d.downpasses = 1 ⇒ Defines number of downpasses
649 f3d.uppasses = 1 ⇒ Defines number of uppasses
650 f3d.gridmode = 1 ⇒ Sets whether grid is fixed or updates

automatically. In this case it is fixed.651

652 f3d.mgverbose = 1 ⇒ Level of verbosity of multigrid solver
653 f3d.mgntverbose = 1 ⇒ Time step period when convergence

information is printed.654

655 f3d.lcndbndy = true ⇒ Turns on sub-grid boundaries
656 f3d.lprecalccoeffs = true ⇒ Precalculates the finite difference

coefficients and saves them on a mesh.
Faster but uses more memory.

657

658

659 f3d.laddconductor = false ⇒ Call python function calladdconductor
at beginning of field solve when true.660

661 top.lgridqnt = true ⇒ Ensures that zgrid is always an integer
number of dz.662

663 top.lvinject = true ⇒ Sets whether source is included in field
solver.664

665 # Setup Envelope Boundaries
666 env.zl = w3d.zmmin ⇒ Starting z for envelope calculation.
667 env.zu = w3d.zmmax ⇒ Ending z for envelope calculation.
668 env.dzenv = machine_syslen/1000 ⇒ Envelop step size [m]
669

June 8, 2014 40

Vince Moens Chapter 5. Explanation of current WARP scripts

670

671 w3d.interpdk[1]=1 ⇒ Crucial aspect of code. Turns on the
Drift-Lorentz mover allowing a time step
which is larger than the gyroperiod. This
was discussed above at the compaction
factor.

672

673

674

675

676 w3d.igradb=1 ⇒ Specifies method of calculating grad B.
1: looking up in table
2: assuming quadrupoles
3: lookup in z, quad in x and y.

677

678

679

680 from loadgradb import setbsqgrad ⇒ Loads the package that generates the
array of grad B2 data.681

682 setbsqgrad(w3d.nx,w3d.ny,w3d.nz,w3d.xmmin,w3d. ⇒ Generation of grad B2 array.
xmmax,w3d.ymmin,w3d.ymmax,w3d.zmmin,w3d.zmmax)

683

684 # Generate Envelope function ⇒ Loads the
envelope package, generates the envelope
and advances the simulations 1 step.

685 package("env");generate();step
686

687 # >>> Generate the PIC code (allocate storage,
load ptcls, t=0 plots, etc.). ⇒ Loads the field solver package,

generates the grid and allocates storage.688 package("w3d");generate()
689

690 # >>> Plot the PIC grid ⇒ This command creates a simple 2D
plot of the grid. An example is shown
below with a grid of 32 × 32 × 256 cells.

 0 1 2 3 4
0.00

0.01

0.02

0.03
Envelope

Z

Step 0, T = 0.0000e+0 s, Zbeam = 0.0000e+0 m
Tevatron Electron Lens 2
Child−Langmuirgun

V. Moens, Mon Mar 31 17:03:31 2014 TEL2s_1403311703_gun_P5000VB3−50−3kG.000

5

.
The title envelope is to be neglected
here. It is a remnant of another plot that
has been placed on top of the grid.

691 plotgrid()
692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

June 8, 2014 41

Vince Moens Chapter 5. Explanation of current WARP scripts

717

718 #-------------------------------# ⇒ This section installs all the conductors
such as the cathode and anodes into the
system. This is setup dependen and thus
formulated into if-loops. The installation
is done using surfaces of revolution and
pre-installed cylinder elements. The
surfaces of revolution require the radial
and longitudinal positions or the vartices
as well the as the radius of curvature
inbetween the vartices.

719 # Installing Conductors #
720 #-------------------------------#
721

722 if (machine_injtype=="gun"):
723

724

725

726

727 # --- Electron Gun ---#
728 # - Gun Drift Pipe ⇒ These are each time created just

before the execution of the Surfaces fo
Revolution command ZSrfrv.

729 gun_driftpipe=ZCylinderOut(radius=Gun_pipe_ri,
zlower=Gun_pipe_zstart,zupper=Gun_pipe_zend,
xcent=0.0,ycent=0.0, voltage=Gun_pipe_voltage)

730 # - Cathode
731 gun_cathode_r = [Cathode_radi,Cathode_radi,

Cathode_rado,Cathode_rado]
732 gun_cathode_z = [Cathode_zstart,Cathode_zend,

Cathode_zend,Cathode_zstart]
733 gun_cathode_radi=[None,Cathode_radcurvb,None,

None]
734 gun_cathode=ZSrfrv(rsrf=gun_cathode_r,zsrf=

gun_cathode_z,rad=gun_cathode_radi,voltage=
Cathode_voltage,xcent=.0e0,ycent=.0e0,zcent=.0
e0)

735 # - Anode
736 gun_anode_r = [Anode_r1,Anode_r3,Anode_r4

,Anode_r5,Anode_rendi,Anode_rendo,Anode_rendo,
Anode_r2,Anode_r2,Anode_radtipo,Anode_radtipi]

737 gun_anode_z = [Anode_z1,Anode_z3,Anode_z4
,Anode_z5,Anode_zend,Anode_zend,Anode_z5,
Anode_z4,Anode_z2,Anode_zstart,Anode_zstart]

738 gun_anode_radi = [None,None,None,None,None,
None,None,None,Anode_radcurvb,None,
Anode_radcurvs]

739 gun_anode = ZSrfrv(rsrf=gun_anode_r,
zsrf=gun_anode_z,rad=gun_anode_radi, voltage=
Anode_voltage,xcent=.0e0,ycent=.0e0,zcent=.0e0)

740 # - Electrode F
741 gun_electrodef_r = [ElectrodeF_r1,

ElectrodeF_ro,ElectrodeF_ro,ElectrodeF_ri,
ElectrodeF_ri]

742 gun_electrodef_z = [ElectrodeF_zend,
ElectrodeF_z2,ElectrodeF_zstart,
ElectrodeF_zstart,ElectrodeF_z1]

743 gun_electrodef_radi = [ElectrodeF_radcurvb,None,
None,None,ElectrodeF_radcurvs]

June 8, 2014 42

Vince Moens Chapter 5. Explanation of current WARP scripts

744 gun_electrodef = ZSrfrv(rsrf=
gun_electrodef_r,zsrf=gun_electrodef_z,rad=
gun_electrodef_radi,voltage=ElectrodeF_voltage,
xcent=0,ycent=0,zcent=.0e0)

745 # - Electrode C
746 gun_electrodeC_r = [ElectrodeC_ro,

ElectrodeC_ro,ElectrodeC_ri,ElectrodeC_ri]
747 gun_electrodeC_z = [ElectrodeC_z1,

ElectrodeC_zstart, ElectrodeC_zstart,
ElectrodeC_z1]

748 gun_electrodeC_radi = [None,None,None,
ElectrodeC_radcurv]

749 gun_electrodeC = ZSrfrv(rsrf=
gun_electrodeC_r,zsrf=gun_electrodeC_z,rad=
gun_electrodeC_radi,voltage=ElectrodeC_voltage,
xcent=0,ycent=0,zcent=.0e0)

750

751 gun_conductors=[gun_driftpipe,gun_driftpipe,
gun_cathode,gun_anode,gun_electrodef,
gun_electrodeC]

752 installconductor(gun_conductors) ⇒ Having
compiled a list of all the conductors as
gun_conductors, this command installs
them into the simulation.

753

754

755

756 # --- Lattice ---# ⇒ Installation of drift pipe throughout
the lens.757 pipe = ZCylinderOut(radius=machine_piperad,zlower=

Gun_pipe_zstart,zupper=machine_syslen,voltage=0.,
xcent=0,ycent=0,zcent=0)

758 lattice_conductors=[pipe]
759 installconductor(lattice_conductors)
760

761 fieldsolve() ⇒ This tells the interpreter to do a
fieldsol, measning that it calculates the
electromagnetic fields in the lens.

762

763

764 #--------------------------# ⇒ Having finished the setup of the lens,
this part sets up the plots.765 # Plotting Lattice #

766 #--------------------------#
767

768 # --- Plotting Envelope Function ⇒ This is the envelope plot which was
overlaid on the previous grid plot. It
doesn’t produce a proper output which
still needs to be ivnestigated.

769 penv(color="fg",marks=0,marker=None,msize=1.0,
lframe=0,titles=1,ascale=None,bscale=None,zscale=
None)

770 fma()
771

772

773

774

775

776

June 8, 2014 43

Vince Moens Chapter 5. Explanation of current WARP scripts

777

778

779 # --- Plotting Potential ⇒ This section plots the gun conductors
and
the electrostatic potential around them.

0.00 0.05 0.10 0.15

−0.02

0.00

0.02

Electrostatic potential in z−x plane

Z

X

iy = 0

Step 0, T = 0.0000e+0 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

6

780 if (machine_injtype=="gun"):
781 gun_driftpipe.draw(filled=190,color="fg")
782 gun_cathode.draw(filled=160,color=’fg’)
783 gun_anode.draw(filled=100,color=’fg’)
784 gun_electrodef.draw(filled=150,color=’fg’)
785 gun_electrodeC.draw(filled=150,color=’fg’)
786 pfzr(fullplane=1,plotsg=1,cond=1,fill=1,plotphi=1,

plotrho=0,plotselfe=0,comp=’z’,titles=1)
787 limits(Cathode_zstart,Gun_pipe_zend,-1.2*

machine_piperad,1.2*machine_piperad)
788 fma()
789

790

791

792

793

794

795 # --- Plotting Charge ⇒ This section plots the gun conductors
and the charge density on them. The plot
does not work properly yet.

0.00 0.05 0.10 0.15

−0.02

0.00

0.02

Charge density in z−x plane

Z

X

iy = 0

Step 0, T = 0.0000e+0 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

7

796 if (machine_injtype=="gun"):
797 gun_driftpipe.draw(filled=190,color="fg")
798 gun_cathode.draw(filled=160,color=’fg’)
799 gun_anode.draw(filled=100,color=’fg’)
800 gun_electrodef.draw(filled=150,color=’fg’)
801 gun_electrodeC.draw(filled=150,color=’fg’)
802 pfzr(fullplane=1,plotsg=1,cond=1,fill=1,plotphi=0,

plotrho=1,plotselfe=0,comp=’E’,titles=1)
803 limits(Cathode_zstart,Gun_pipe_zend,-1.2*

machine_piperad,1.2*machine_piperad)
804 fma()
805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

June 8, 2014 44

Vince Moens Chapter 5. Explanation of current WARP scripts

822

823

824 # --- Plotting E-field ⇒ This section plots the gun conductors
and the magnitude of the electric field. It
is possible to plot specific directions by
changing the "comp" command. Better
results can be obtained by adjusting
the machine_syslen above and thus
spreading the grid over solely the gun.

0.00 0.05 0.10 0.15

−0.02

0.00

0.02

Emagnitude in z−x plane

Z

X

iy = 0

Step 0, T = 0.0000e+0 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

8

825 if (machine_injtype=="gun"):
826 gun_driftpipe.draw(filled=190,color="fg")
827 gun_cathode.draw(filled=160,color=’fg’)
828 gun_anode.draw(filled=100,color=’fg’)
829 gun_electrodef.draw(filled=150,color=’fg’)
830 gun_electrodeC.draw(filled=150,color=’fg’)
831 pfzr(fullplane=1,plotsg=1,cond=1,fill=1,plotphi=0,

plotrho=0,plotselfe=1,comp=’E’,titles=1)
832 limits(Cathode_zstart,Gun_pipe_zend,-1.2*

machine_piperad,1.2*machine_piperad)
833 fma()
834

835

836

837

838

839

840

841

842

843

844

845 # --- Plotting Electric Field
846 if (machine_injtype=="gun"): ⇒ Plots conductors and Ez.

0.00 0.05 0.10 0.15

−0.02

0.00

0.02

Ez in z−x plane

Z

X

iy = 0

Step 0, T = 0.0000e+0 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

9

847 gun_driftpipe.draw(filled=190,color="fg")
848 gun_cathode.draw(filled=160,color=’fg’)
849 gun_anode.draw(filled=100,color=’fg’)
850 gun_electrodef.draw(filled=150,color=’fg’)
851 gun_electrodeC.draw(filled=150,color=’fg’)
852 pfzr(fullplane=1,plotsg=1,cond=1,fill=1,plotphi=0,

plotrho=0,plotselfe=1,comp=’z’,titles=1)
853 limits(Cathode_zstart,Gun_pipe_zend,-1.2*

machine_piperad,1.2*machine_piperad)
854 fma()
855 ## ---REPETITIVE PLOTS

⇒ These are plots that are repeated
for given timesteps. The timesteps are
given by the command itplalways or
itplseldom.

856

857

858

859

860

861

862

863

864

865

866

June 8, 2014 45

Vince Moens Chapter 5. Explanation of current WARP scripts

867

868

869 def myplots():
870 # --- Plotting Particles in X-Z plane. ⇒ This plot provides a 2D projection

of the particles on the X-Z plane.
The density is color coded. The
particles plotted are macro-particles.

 0 1 2

−0.02

0.00

0.02

 0

 100

 200

 300

 400

X vs Z

Z

X

z window0 = 0.0000e+00, 2.8600e+00

Step 3054, T = 136.3759e−9 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

10

871 if (machine_injtype=="gun"):
872 gun_driftpipe.draw(filled=190,color="fg")
873 gun_cathode.draw(filled=160,color=’fg’)
874 gun_anode.draw(filled=100,color=’fg’)
875 gun_electrodef.draw(filled=150,color=’fg’)
876 gun_electrodeC.draw(filled=150,color=’fg’)
877 pipe.draw(filled=60,color=’fg’)
878 limits(Cathode_zstart,machine_syslen,-1.2*

machine_piperad,1.2*machine_piperad)
879 # pfzr(fullplane=1,plotsg=1,cond=1,fill=1,

plotphi=0,plotrho=0,plotselfe=1,comp=’z’,titles
=1)

880 ppzx(color="density",ncolor=30)
881 fma()
882

883

884

885 # --- Plotting Particles in Y-Z plane. ⇒ This plot provides a 2D projection
of the particles on the Y-Z plane.
The density is color coded. The
particles plotted are macro-particles.

 0 1 2

−0.02

0.00

0.02

 0

 100

 200

 300

 400

Y vs Z

Z

Y

z window0 = 0.0000e+00, 2.8600e+00

Step 3054, T = 136.3759e−9 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

11

886 if (machine_injtype=="gun"):
887 gun_driftpipe.draw(filled=190,color="fg")
888 gun_cathode.draw(filled=160,color=’fg’)
889 gun_anode.draw(filled=100,color=’fg’)
890 gun_electrodef.draw(filled=150,color=’fg’)
891 gun_electrodeC.draw(filled=150,color=’fg’)
892 pipe.draw(filled=60,color=’fg’)
893 limits(Cathode_zstart,machine_syslen,-1.2*

machine_piperad,1.2*machine_piperad)
894 # pfzr(fullplane=1,plotsg=1,cond=1,fill=1,

plotphi=0,plotrho=0,plotselfe=1,comp=’z’,titles
=1)

895 ppzy(color="density",ncolor=30)
896 fma()
897

898

899

900

901 # --- Plots Vz vs. vperp ⇒

0. 1. 2. 3.
10+6

0.

1.

2.

3.

10+4

 0

 100

 200

 300

 400

Vperp vs Vz

Vz

V
p

e
rp

z window1 = 0.0000e+00, 3.7455e−03

Step 3054, T = 136.3759e−9 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

12

902 ppvzvperp(iw=1,color="density",ncolor=30)
903 fma()
904

905

906

907

908

909

June 8, 2014 46

Vince Moens Chapter 5. Explanation of current WARP scripts

910

911

912 # --- Plot vx vs. vy ⇒

−2. 0. 2.
10+4

−2.

0.

2.

10+4

 0

 100

 200

 300

 400

 500

Vy vs Vx

Vx

V
y

z window1 = 0.0000e+00, 3.7455e−03

Step 3054, T = 136.3759e−9 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

13

913 ppvxvy(iw=1,color="density",ncolor=30)
914 fma()
915

916

917

918

919

920

921

922

923

924

925

926

927 # --- Plot y vs. vy ⇒

−0.01 0.00 0.01

−2.

0.

2.

10+4

 0

 20

 40

 60

 80

Vy vs Y

Y

V
y

z window1 = 0.0000e+00, 3.7455e−03

Step 3054, T = 136.3759e−9 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

14

928 ppyvy(iw=1,color="density",ncolor=30)
929 fma()
930

931

932

933

934

935

936

937

938

939

940

941

942 # --- Plot x vs. vx ⇒

−0.01 0.00 0.01

−2.

0.

2.

10+4

 0

 20

 40

 60

 80

Vx vs X

X

V
x

z window1 = 0.0000e+00, 3.7455e−03

Step 3054, T = 136.3759e−9 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

15

943 ppxvx(iw=1,color="density",ncolor=30)
944 fma()
945

946

947

948

949

950

951

952

953

954

955

956

957

958

June 8, 2014 47

Vince Moens Chapter 5. Explanation of current WARP scripts

959

960

961 # --- Plot phase space ⇒

−0.01 0.00 0.01

−0.01

0.00

0.01

−0.01 0.00 0.01
−0.4

−0.2

0.0

0.2

−0.01 0.00 0.01

−0.2

0.0

0.2

0.4

−0.4 −0.2 0.0 0.2

−0.2

0.0

0.2

0.4

z window0 = 0.0000e+00, 2.8600e+00

 0

 200

 400

 600

 800

Y vs X

X

Y

 0

 200

 400

 600

 800

Y’ vs Y

Y

Y
’

 0

 200

 400

 600

 800

X’ vs X

X

X
’

 0

 500

 1000

 1500

 2000

X’ vs Y’

Y’

X
’

Step 3054, T = 136.3759e−9 s, Zbeam = 0.0000e+0 m
Electron Lens Test Bench
Child−Langmuirgun

V. Moens, Mon Mar 3 17:15:02 2014 tbench_1403031715_gun_P5000VB1−4−1kG.000

16

962 pptrace(filled=1,particles=0,contours=30)
963 fma()
964

965

966

967

968

969

970

971

972

973

974

975

976 installplalways(myplots) ⇒ This installs the plots which were
defined above in "myplots".977

978 # >>> run time steps and dump the results. ⇒ This runs the actual particle in
cell codes, running the time steps that
advance the particles along the lens.
nsteps defines the number of timesteps
that are to be run. It was calculated
before. For testing purposes this may be
replaced by a given number.

979 step(nsteps)
980

981

982

983

984

985

986 # --- Acquisition of field data
987 ex=getex() ⇒ Acquisition of electric field data.
988 ey=getey()
989 ez=getez()
990 bx=getbx() ⇒ Acquisition of magnetic field data.
991 by=getby()
992 bz=getbz()
993 ke=getke() ⇒ Acquisition of vector potential data.
994

995 ff = open(’../Results/’+date+’/’+machine_type+"_"+⇒ The next you lines write the particle
positions to a file with the same name but
the name _particlepos appended. First
it opens the file using the open command
and then writes some preambulatory
information. Next it outputs the
positions in 12 columns. First the
position in the first 3 columns, then
the velocities of the particles, next the
kinetic energy of the particle and lastly
the electric fields at the particle positions
for electric and magentic fields in all 3
directions. It is important to notice that
this file gives all the information at the
particle positions, not the frid data. The
grid data is provided in the next file.

date+time+"_"+machine_injtype+"_"+file_ending+’
_particlepos.txt’,’w’)

996 ff.write(’#Warp simulation of ’+machine_type+’\n#
Author: Vince Moens \n# Particle Dump giving
position, velocity kinetic energy and the fields
at the particles. \n# Date: ’+date+’\n# Time: ’+
time+’\n\n# Time: %10.5e s\n# Number of timesteps
: %10.5e \n# Timestep size: %10.5e s\n# Solenoid
Fields: %10.5e-%10.5e-%10.5e T\n# Cathode-Anode
voltage: %10.5eV\n# Beam current: %10.5e A\n#
Beam velocity: %10.5e m/s\n# Bem velocity over c:
%10.5e \n# Kinetic Energy: %10.5e eV\n\n’ %(top.

June 8, 2014 48

Vince Moens Chapter 5. Explanation of current WARP scripts

dt*int(nsteps),int(nsteps),top.dt,Bgun,Bmain,
Bcoll,Cathode_Potential,top.ibeam,top.vbeam,top.
vbeamoc,top.ekin))

997 ff.write(’# Number of Macroparticles: %10.5e\n#
Macroparticle weight: %10.5e electrons\n#
Macroparticle charge: %10.5e coulombs\n\n’ %(elec
.nps,elec.sw,elec.sq*elec.sw))

998 ff.write(’X[m] Y[m] Z[m] Xv[m/s] Yv[m/s] Zv[m/s]
KE[eV] E_x[V/m] E_y[V/m] E_z[V/m] B_x[T] B_y[T]
B_z[T] B[T]\n’)

999 for x,y,z,u,v,g,a,b,c,d,e,f in zip(elec.xp,elec.yp
,elec.zp,elec.uxp,elec.uyp,elec.uzp,ex,ey,ez,bx,
by,bz):

1000 ff.write(’%10.5e %10.5e %10.5e %10.5e %10.5e
%10.5e %10.5e %10.5e %10.5e %10.5e %10.5e %10.5
e\n’ %(x,y,z,u,v,g,a,b,c,d,e,f))

1001 ff.close()
1002

1003 # Obtaining electric fields on grid ⇒ Thsi section obtains the electric fields
from the grid data.1004 allocateselfeforfieldsolve()

1005 nx,ny,nz = array(w3d.phi.shape) #- 1
1006 getselfe3d(w3d.phi,w3d.nxlocal,w3d.nylocal,w3d.

nzlocal,
1007 w3d.nxguardphi,w3d.nyguardphi,w3d.

nzguardphi,
1008 w3d.selfe,w3d.nxguarde,w3d.nyguarde,w3d.

nzguarde,
1009 w3d.dx,w3d.dy,w3d.dz,true)
1010 selfe = w3d.selfe[:,w3d.nxguarde:-w3d.nxguarde or

None,
1011 w3d.nyguarde:-w3d.nyguarde or

None,
1012 w3d.nzguarde:-w3d.nzguarde or

None]
1013

1014 Ex = selfe[0,...]
1015 Ey = selfe[1,...]
1016 Ez = selfe[2,...]
1017

1018 #Provide fields for whole grid information! ⇒ Saving file to file with ending
_Efields. The data is saved in slices
along the z-axis for each direction of E.

1019

1020 ff = open(’../Results/’+date+’/’+machine_type+"_"+
date+time+"_"+machine_injtype+"_"+file_ending+’
_Efields.txt’,’w’)

1021 ff.write(’#Warp simulation of ’+machine_type+’\n#
Author: Vince Moens \n# Particle Dump \n# Date: ’
+date+’\n# Time: ’+time+’\n\n# Time: %10.5e s\n#
Number of timesteps: %10.5e \n# Timestep size:
%10.5e s\n# Solenoid Fields: %10.5e-%10.5e-%10.5e

June 8, 2014 49

Vince Moens Chapter 5. Explanation of current WARP scripts

T\n# Cathode-Anode voltage: %10.5eV\n# Beam
current: %10.5e A\n# Beam velocity: %10.5e m/s\n#
Bem velocity over c: %10.5e \n# Kinetic Energy:

%10.5e eV\n\n’ %(top.dt*int(nsteps),int(nsteps),
top.dt,Bgun,Bmain,Bcoll,Cathode_Potential,top.
ibeam,top.vbeam,top.vbeamoc,top.ekin))

1022 ff.write(’# Number of Macroparticles: %10.5e\n#
Macroparticle weight: %10.5e electrons\n#
Macroparticle charge: %10.5e coulombs\n\n’ %(elec
.nps,elec.sw,elec.sq*elec.sw))

1023 ff.write(’#Grid size in x: %10.5e\n# Grid size in
y: %10.5e\n# Grid size in z: %10.5e\n# Cell size
in x: %10.5e m\n# Cell size in y: %10.5e m\n#
Cell size in z: %10.5e\n’ %(w3d.nx,w3d.ny,w3d.nz,
dx,dy,dz))

1024 ff.write(’\n\nE_x[V/m]:\n\n’)
1025 data=Ex
1026 # Write the array to disk. I’m writing a header

here just for the sake of readability. Any line
starting with "#" will be ignored by numpy.
loadtxt

1027 ff.write(’# Array shape: {0}\n’.format(data.shape)
)

1028

1029 # Iterating through a ndimensional array produces
slices along the last axis. This is equivalent to
data[i,:,:] in this case

1030 for data_slice in data:
1031

1032 # The formatting string indicates that I’m
writing out the values in left-justified
columns 7 characters in width with 2 decimal
places.

1033 np.savetxt(ff, data_slice, fmt=’%-7.2f’)
1034

1035 # Writing out a break to indicate different
slices...

1036 ff.write(’# New slice\n’)
1037

1038 ff.write(’\n\nE_y[V/m]:\n\n’)
1039 data=Ey
1040 # Write the array to disk. I’m writing a header

here just for the sake of readability Any line
starting with "#" will be ignored by numpy.
loadtxt

1041 ff.write(’# Array shape: {0}\n’.format(data.shape)
)

1042

June 8, 2014 50

Vince Moens Chapter 5. Explanation of current WARP scripts

1043 # Iterating through a ndimensional array produces
slices along the last axis. This is equivalent to
data[i,:,:] in this case

1044 for data_slice in data:
1045

1046 # The formatting string indicates that I’m
writing out the values in left-justified
columns 7 characters in width with 2 decimal
places.

1047 np.savetxt(ff, data_slice, fmt=’%-7.2f’)
1048

1049 # Writing out a break to indicate different
slices...

1050 ff.write(’# New slice\n’)
1051 ff.write(’\n\nE_z[V/m]:\n\n’)
1052 data=Ez
1053 # Write the array to disk. I’m writing a header

here just for the sake of readability Any line
starting with "#" will be ignored by numpy.
loadtxt

1054 ff.write(’# Array shape: {0}\n’.format(data.shape)
)

1055

1056 # Iterating through a ndimensional array produces
slices along the last axis. This is equivalent to
data[i,:,:] in this case

1057 for data_slice in data:
1058

1059 # The formatting string indicates that I’m
writing out the values in left-justified
columns 7 characters in width with 2 decimal
places.

1060 np.savetxt(ff, data_slice, fmt=’%-7.2f’)
1061

1062 # Writing out a break to indicate different
slices...

1063 ff.write(’# New slice\n’)
1064 # E_y[V/m] E_z[V/m] E[V/m] B_x[T] B_y[T] B_z[T] B[

T] Ax[’)
1065 # for x,y,z,u,v,g in zip(FIND THIS):
1066 # ff.write(’%10.5e %10.5e %10.5e %10.5e %10.5e

%10.5e\n’ %(x,y,z,u,v,g))
1067 ff.close()
1068

1069 # Obtaining magnetic fields on grid ⇒ Obtaining magnetic fields on grid
1070

1071 bfield = f3d.bfield
1072 nxguardb = bfield.nxguardb
1073 nyguardb = bfield.nyguardb

June 8, 2014 51

Vince Moens Chapter 5. Explanation of current WARP scripts

1074 nzguardb = bfield.nzguardb
1075

1076 b = bfield.b[:,nxguardb:-nxguardb or None,
1077 nyguardb:-nyguardb or None,
1078 nzguardb:-nzguardb or None]
1079 Bx = b[0,...]
1080 By = b[1,...]
1081 Bz = b[2,...]
1082

1083 #Provide fields for whole grid information! ⇒ Saving magnetic field data to file in
slices along the z-axis for each direction
of the magnetic field.

1084

1085 ff = open(’../Results/’+date+’/’+machine_type+"_"+
date+time+"_"+machine_injtype+"_"+file_ending+’
_Bfields.txt’,’w’)

1086 ff.write(’#Warp simulation of ’+machine_type+’\n#
Author: Vince Moens \n# Particle Dump \n# Date: ’
+date+’\n# Time: ’+time+’\n\n# Time: %10.5e s\n#
Number of timesteps: %10.5e \n# Timestep size:
%10.5e s\n# Solenoid Fields: %10.5e-%10.5e-%10.5e
T\n# Cathode-Anode voltage: %10.5eV\n# Beam

current: %10.5e A\n# Beam velocity: %10.5e m/s\n#
Bem velocity over c: %10.5e \n# Kinetic Energy:

%10.5e eV\n\n’ %(top.dt*int(nsteps),int(nsteps),
top.dt,Bgun,Bmain,Bcoll,Cathode_Potential,top.
ibeam,top.vbeam,top.vbeamoc,top.ekin))

1087 ff.write(’# Number of Macroparticles: %10.5e\n#
Macroparticle weight: %10.5e electrons\n#
Macroparticle charge: %10.5e coulombs\n\n’ %(elec
.nps,elec.sw,elec.sq*elec.sw))

1088 ff.write(’#Grid size in x: %10.5e\n# Grid size in
y: %10.5e\n# Grid size in z: %10.5e\n# Cell size
in x: %10.5e m\n# Cell size in y: %10.5e m\n#
Cell size in z: %10.5e\n’ %(w3d.nx,w3d.ny,w3d.nz,
dx,dy,dz))

1089 ff.write(’\n\nB_x[T]:\n\n’)
1090 data=Bx
1091 # Write the array to disk. I’m writing a header

here just for the sake of readability. Any line
starting with "#" will be ignored by numpy.
loadtxt

1092 ff.write(’# Array shape: {0}\n’.format(data.shape)
)

1093

1094 # Iterating through a ndimensional array produces
slices along the last axis. This is equivalent to
data[i,:,:] in this case

1095 for data_slice in data:
1096

June 8, 2014 52

Vince Moens Chapter 5. Explanation of current WARP scripts

1097 # The formatting string indicates that I’m
writing out the values in left-justified
columns 7 characters in width with 2 decimal
places.

1098 np.savetxt(ff, data_slice, fmt=’%-7.2f’)
1099

1100 # Writing out a break to indicate different
slices...

1101 ff.write(’# New slice\n’)
1102

1103 ff.write(’\n\nB_y[T]:\n\n’)
1104 data=By
1105 # Write the array to disk. I’m writing a header

here just for the sake of readability. Any line
starting with "#" will be ignored by numpy.
loadtxt

1106 ff.write(’# Array shape: {0}\n’.format(data.shape)
)

1107

1108 # Iterating through a ndimensional array produces
slices along the last axis. This is equivalent to
data[i,:,:] in this case

1109 for data_slice in data:
1110

1111 # The formatting string indicates that I’m
writing out the values in left-justified
columns 7 characters in width with 2 decimal
places.

1112 np.savetxt(ff, data_slice, fmt=’%-7.2f’)
1113

1114 # Writing out a break to indicate different
slices...

1115 ff.write(’# New slice\n’)
1116 ff.write(’\n\nB_z[T]:\n\n’)
1117 data=Bz
1118 # Write the array to disk. I’m writing a header

here just for the sake of readability. Any line
starting with "#" will be ignored by numpy.
loadtxt

1119 ff.write(’# Array shape: {0}\n’.format(data.shape)
)

1120

1121 # Iterating through a ndimensional array produces
slices along the last axis. This is equivalent to
data[i,:,:] in this case

1122 for data_slice in data:
1123

1124 # The formatting string indicates that I’m
writing out the values in left-justified

June 8, 2014 53

Vince Moens Chapter 5. Explanation of current WARP scripts

columns 7 characters in width with 2 decimal
places.

1125 np.savetxt(ff, data_slice, fmt=’%-7.2f’)
1126

1127 # Writing out a break to indicate different
slices...

1128 ff.write(’# New slice\n’)
1129 # E_y[V/m] E_z[V/m] E[V/m] B_x[T] B_y[T] B_z[T] B[

T] Ax[’)
1130 # for x,y,z,u,v,g in zip(FIND THIS):
1131 # ff.write(’%10.5e %10.5e %10.5e %10.5e %10.5e

%10.5e\n’ %(x,y,z,u,v,g))
1132 ff.close()
1133

1134 dump() \marginpar{\Rightarrow Transfers all data⇒ Having finished the simulations, we
dump the simulation data so that it can
be reloaded. Explain how to reload.

to the Results directory. } os.system("mv "+
machine_type+"_"+date+time+"_"+machine_injtype+"_
"+file_ending+"* ../Results/"+date+"/")

June 8, 2014 54

Vince Moens Chapter 5. Explanation of current WARP scripts

5.3 Example of running the script in the current environment.

First of all I need to authenticate with Kerberos:

moensv@moensv-desktop:~$ kinit vmoens
Password for vmoens@FNAL.GOV:
moensv@moensv-desktop:~$

As suggested in previous chapters, I have my scripts stored on the fast partition of TEV. If I
want to run a new file that is currently still stored on my personal computer I will first upload it to
my Scripts directoy:

cd /Directory/of/my/script
scp -r elens_complex_P9000VB0p3-5-0p3T.py vmoens@tev.fnal.gov:/fast/uslarp/vmoens/Scripts

This will upload my file. The output thereof looks as follows:

moensv@moensv-desktop:~$ scp -r elens_complex_P9000VB0p3-5-0p3T.py vmoens@tev.fnal.gov:/fast
/uslarp/vmoens/Scripts

elens_complex_P9000VB0p3-5-0p3T.py 100% 49KB 49.1KB/s 00:00

I now log into my account on TEV and access the Scripts directory:

moensv@moensv-desktop:~$ ssh -Y vmoens@tev.fnal.gov
Last login: Thu May 29 08:33:34 2014 from 80-218-119-213.dclient.hispeed.ch
Fermi Linux slf51 INSTALL for FermiGenericServer via CDROM on Thu Oct 6 16:05:06 CDT 2011
...
==

For further information please visit http://tev.fnal.gov
or email us at tev-admin@fnal.gov

==

[vmoens@tev uslarp]$ cd /fast/uslarp/vmoens/Scripts/
[vmoens@tev Scripts]$

Next we need to draft a run file as explained above. Open the run file in vim:

vim elens_complex_P9000VB0p3-5-0p3T.run

And enter the following into the file:

execute with: qsub -l nodes=23:amd32 -q amd32 elens_complex_P9000VB0p3-5-0p3T.run -A
uslarp

#!/bin/bash
#PBS -A uslarp
#PBS -l nodes=23,walltime=24:00:00

cd /fast/uslarp/vmoens/Scripts

/usr/local/openmpi/bin/mpiexec -npernode 1 -np 23 pyMPI elens_complex_P9000VB0p3-5-0p3T.py

echo
exit
~
~
-- INSERT -- 9,1 All

June 8, 2014 55

Vince Moens Chapter 5. Explanation of current WARP scripts

Save it by writing :wq. Now you have all files in your Script directory to run the simulation. You
still need to bcreate the Results folder. So call the results folder and create the correct date folder:

cd ../Results/
mkdir 140529
cd ../Scripts/

You are now ready to run the simulation. Obtain the run code from your run file by copying the
first line and submit it with qsub:

[vmoens@tev Scripts]$ cat elens_complex_P9000VB0p3-5-0p3T.run
execute with: qsub -l nodes=23:amd32 -q amd32 elens_complex_P9000VB0p3-5-0p3T.run -A

uslarp

#!/bin/bash
#PBS -A uslarp
#PBS -l nodes=23,walltime=24:00:00

cd /fast/uslarp/vmoens/Scripts

/usr/local/openmpi/bin/mpiexec -npernode 1 -np 23 pyMPI elens_complex_P9000VB0p3-5-0p3T.py

echo
exit
[vmoens@tev Scripts]$ qsub -l nodes=23:amd32 -q amd32 elens_complex_P9000VB0p3-5-0p3T.run -A

uslarp
76091.tev.fnal.gov
[vmoens@tev Scripts]$

The simulation has now been submitted to qsub. Its job ID is 76091. Check the status with qstat:

[vmoens@tev Scripts]$ qstat
Job id Name User Time Use S Queue
--
75858.tev STDIN lammel 00:00:00 R long_phi
76090.tev runTanV2_3.sh lebrun 21:55:05 R amd32
76091.tev ...p3-5-0p3T.run vmoens 00:02:10 R amd32
[vmoens@tev Scripts]$

It has been running for a total of 2 minutes and 10 seconds at this point. When the simulation is
finished it will disappear from the qstat output and appear in the Results folder you created above.
You can then look at the results using gist:

cd ../Results/140529/
gist FILENAME.cgm

What you do with the results is up to you. I recommend not to leave them on the fast partition
but to move them with scp to vdisk1.

June 8, 2014 56

Chapter 6

Acknowledgements

At the points I would like to thank the following people in helping me troubleshoot the issues with
installing WARP.

David P. Grote David is one of the developers of WARP over at Lawrence Berkley National
Laboratory. He was incredibly helpfull in debugging all the error codes from TEV and even created
an account on TEV for himself in order to help with the installation of WARP.

Eric G. Stern Eric works at the Scientific Computing Division at Fermilab. He helped out with
local issues and the debugging of some of the error messages on TEV.

Moses Chung Moses works at the APC Experimental Beam Physics Department and has used
WARP for his PhD thesis. He was helpfull in gathering information from friends, former students
and his own work in order to help with the installation.

tev-admin@fnal.gov The admin guys of tev were incredibly useful in answering questions
concerning the architecture of tev and the packages that are installed.

Alexander Valishev Alexander organized the accounts for David, which ultimately lead to
david being able to solve the issue.

Giulio Stancari Giulio was very helpfull by providing his old isntallation files froma previous
version that provided some comparisons and giving helpful tips.

For further questions concernign the installation of WARP, please don’t hesitate to ask me by
sending me an email to vmoens@fnal.gov.

June 8, 2014 57

Vince Moens Recommended Literature

Recommended Literature

[1] David P Grote et al. WARP Manual. Lawrence Livermore National Laboratory, 7000:94550–9234, April
2000.

[2] Vince Moens. Experimental and Numerical Studies on the Proposed Application of Hollow Electron Beam
Collimation for the LHC at CERN.

[3] D.p. Grote J.-L. Vay R. H.. Cohen, A. Friedman. Large-timestep mover for particle simulations of
arbitrarily magnetized species. Nuclear Instruments & Methods in Physics Research, Section A:
Accelerators, Spectrometers, Detectors, and Associated Equipment, pages 52–57, February 2007.

June 8, 2014 58

	Introduction
	WARP Installation
	Introduction
	Installation procedure
	Installing on a personal computer
	Installing Python
	Installing Numpy
	Installing SciPy
	Installing iPython
	Installing Forthon
	Installing openmpi
	Installing WARP
	Single Installation Configuration
	Parallel Installation Configuration

	Installing PyGist

	Installing on TEV or vdisk1
	Installing Python
	Installing Numpy
	Installing SciPy
	Installing iPython
	Installing Forthon
	Installing WARP
	Single Installation Configuration
	Parallel Installation Configuration

	Installing PyGist

	Reinstall & Update

	Using iPython, WARP, Gist, MPIRUN, PyMPI, qsub, qstat
	Using iPython
	Using WARP
	Using Gist
	Using mpirun and pyMPI
	Using qsub
	Using qstat
	Checking the progress of a simulation and killing a job.
	Reloading a dumped simulation.

	The TEV and vdisk1 computing devices.
	Explanation of current WARP scripts
	Naming of the scripts
	Explanation of current HEBL script
	Example of running the script in the current environment.

	Acknowledgements
	Table of Contents

